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In many cases research focuses on models where the dependent variable is categorical. Instead we 
would carry out a logistic regression analysis. Hence, logistic regression may be thought of as an 
approach that is similar to that of multiple linear regressions, but takes into account the fact that the 
dependent variable is categorical. Binary responses are commonly studied in many fields. Examples 
include the presence or absence of a particular disease, death during surgery, or a consumer 
purchasing a product. However, in many situations, there are multiple descriptors, or one or more 
of the descriptors are continuous. Without a statistical model, studying patterns such as the 
relationship between age and occurrence of a disease, for example, would require the creation of 
arbitrary age groups to allow estimation of disease prevalence as a function of age. .  In biomedical 
research it is common to observe multivariate time series data where the outcomes are binary. the 
purpose of analysis include assessing the association among variable at one time, identifying lead 
lag relationships among variables, and regressing, one outcome on others as well as on fixed 
covariates. In this paper the in cadence of tuberculosis using binary Logistic regression has been 
studied. 

 
 

 
 

 
 
 
 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 
 
 
 
 
 
 

 
 

  
 
 
 

INTRODUCTION 
 

The statistical properties of linear regression models are 
invariant to the (unconditional) mean of the dependent variable, 
the same is not true for binary dependent variable models. The 
mean of a binary variable is the relative frequency of events in 
the data, which, in addition to the number of observations, 
constitutes the information content For example, that logit 
coefficients are biased in small samples (under about 200) is 
well documented in the statistical literature, but not as widely 
understood is that in rare events data the biases in probabilities 
can be substantively meaningful with sample sizes in the 
thousands and are in a predictable direction: estimated event 
probabilities are too small. A separate, and also overlooked, 
problem is that the almostuniversally used method of 
computing probabilities of events in logit analysis is 
suboptimal in finite samples of rare events data, leading to 
errors in the same direction as biases in the coefficients. 
Applied researchers virtually never correct for the 
underestimation of event probabilities.  
 

A second source of the difficulties in analyzing rare events lies 
in data collection. Given fixed resources, a tradeoff always 
exists between gathering more observations and including 

better or additional variables. In rare events data, fear of 
collecting data sets with no events (and thus without variation 
on Y) has led researchers to choose very large numbers of 
observations with few, and in most cases poorly measured, 
explanatory variables. This is a reasonable choice, given the 
perceived constraints, but it turns out that far more efficient 
data collection strategies exist. For one example, researchers 
can collect all (or all available) ones and a small random 
sample of zeros and not lose consistency or even much 
efficiency relative to the full sample. This result drastically 
changes the optimal tradeoff between more observations and 
better variables, enabling scholars to focus data collection 
efforts where they matter most. A detailed study an is given in 
section 2.  
 
 

Latent Mycobacterium Tuberculosis Infection 
 

Pathogenesis 
 
 

After inhalation of M. tuberculosis, innate immune responses 
involving alveolar macrophages and granulocytes begin to 
combat the infection; in some persons, the bacilli are cleared, 
whereas in others, infection is established. Replication of 
bacilli in macrophages and regional lymph nodes leads to both 
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lymphatic and hematogenous dissemination, with seeding of 
multiple organs, which may eventually give rise to 
extrapulmonary disease. Containment of bacilli within 
macrophages and extracellularly within granulomas limits 
further replication and controls tissue destruction, resulting in a 
dynamic balance between pathogen and host. The classic 
interpretation of this as a binary process with either truly latent 
M. tuberculosis infection or active tuberculosis disease has 
recently been challenged as an oversimplification. Instead, a 
spectrum of immunologic responses that are both protective 
and pathogenic and correlate with a range of bacterial 
activation has been suggested. This continuum encompasses a 
variety of host–microbe interactions, which are characterized 
by clinical latency when host responses predominate and by 
disease when bacterial replication exceeds the threshold 
required to cause symptoms. Recent evidence suggests that 
host inflammatory responses, particularly with interleukin1β, 
may actually enhance mycobacterial replication, which 
illustrates that the doubleedged sword of immune responses 
seen in tuberculosis disease may also be present in latent 
infection. In addition, persisting extracellular bacilli may 
remain active in a biofilmtype of environment and thus evade 
host defenses; in such cases, the term persistent (rather than 
latent) infection has been suggested to explain the complexity 
of the phenomenon. Animal models such as mice, guinea pigs, 
rabbits, macaques, and zebrafish have been used to study the 
pathogenesis and treatment of latent tuberculosis. A 
shortcoming of all models, however, is the lack of pathological, 
clinical, and therapeutic conformity with human infection and 
disease. Thus, each model may be used to elucidate some 
aspects of the human situation mice, for example, recapitulate 
human treatment experiences, whereas rabbits display 
histopathological features that are similar to those in humans 
but no model can capture the full spectrum of infection, 
disease, and treatment. 
 

Epidemiology and Risk Groups 
 

Current tools are insufficient to measure the global prevalence 
of latent tuberculosis infection, but modeling carried out a 
decade ago estimated that approximately one third of the world 
population (>2 billion people) is latently infected with M. 
tuberculosis.9 Currently, annual rates of infection range from 
4.2% in South Africa10 and 1.7% in Vietnam11 to 0.03% in 
the United States. As tuberculosis treatment has expanded in 
the past 15 years and living conditions have improved 
worldwide, the annual risk of infection may have declined in 
many places; the current global burden of latent infection is 
therefore uncertain and needs to be reassessed. Persons with 
untreated tuberculosis of the respiratory tract are the source of 
transmission in essentially all new cases of tuberculosis 
infection, and up to one third of their household contacts 
become infected. Factors associated with an increased risk of 
infection in a household contact include severe disease in the 
index patient, long periods of exposure to the index patient, and 
poor ventilation and poor exposure to ultraviolet light during 
proximity to the index patient. Reactivation of latent 
tuberculosis infection accounts for the majority of new 
tuberculosis cases, especially in countries in which the 
incidence of tuberculosis is low.  
 

The likelihood of progression of latent infection to active 
clinical tuberculosis disease is determined by bacterial, host, 

and environmental factors. It has been postulated that there are 
differences in the ability of various strains of M. tuberculosis to 
cause disease, but little clinical or epidemiologic data support 
this theory. The initial bacterial load, inferred by the severity of 
disease in an index case and the closeness of the contact, is 
directly associated with the risk of development of the disease. 
Disease develops at a higher rate among infants and very young 
children who have latent infection than among older children 
with latent infection; after a child reaches approximately 5 
years of age, age appears to have little correlation with the risk 
of disease. 
 

Suppression of cellular immunity by human immunodeficiency 
virus (HIV) infection,14 tumor necrosis factor α inhibitors, 
glucocorticoids, and organ or hematologic transplantation 
increases the risk of progression of latent infection 
substantially. Endstage renal disease confers an increased 
likelihood of progression to active tuberculosis. Silicosis and 
exposure to silica dust are also associated with increased rates 
of progression, and the combination of HIV and silicosis in 
South African miners has contributed to an explosive epidemic 
of tuberculosis in this population. Other risk groups that should 
be considered for management of latent tuberculosis infection 
on the basis of a high prevalence or an increased risk of active 
tuberculosis disease include prisoners, illicitdrug users, 
homeless adults, recent immigrants from countries that have a 
high tuberculosis burden, the elderly, health care workers and 
medical students, patients with diabetes, and persons with 
recent conversion of a negative tuberculin skin test to a positive 
test. Table 1 presents the range of published data on the risk of 
active tuberculosis and the prevalence of latent infection in 
selected highrisk groups. 
 

Diagnosis 
 

There are no perfect methods for the diagnosis of latent 
tuberculosis infection. The tuberculin skin test and the IGRAs 
indirectly measure tuberculosis infection by detecting memory 
Tcell response, which reveals only the presence of host 
sensitization to M. tuberculosis antigens.8 The tests are 
generally considered to be acceptable but imperfect. The 
tuberculin skin test is widely used and inexpensive, but it has 
poor specificity in populations vaccinated with bacille 
Calmette–Guérin (BCG), is subject to crossreactivity with 
environmental nontuberculosis mycobacteria, and has poor 
sensitivity in immunocompromised persons. There are also 
logistic drawbacks, including the need for a return visit in 2 to 
5 days to read the amount of induration, since selfreading is 
associated with a high error rate.  Furthermore, there is a 
worldwide shortage of tuberculin, attributed to market forces. 
IGRAs (the QuantiFERONTB Gold InTube assay [Cellestis] 
and the TSPOT.TB assay [Oxford Immunotec]) measure in 
vitro responses of T cells or peripheralblood mononuclear cells 
to M. tuberculosis antigens that are not found in BCG and most 
nontuberculous mycobacteria, and thus specificity for M. 
tuberculosis is higher than with the tuberculin skin test. 
However, recent studies involving serially tested health care 
workers in the United States have shown that false conversions 
(from a negative to a false positive result) and reversions (from 
a positive to a false negative result) are more common with 
IGRAs than with tuberculin skin tests. In addition, IGRAs are 
more costly and require more work in the laboratory. The 
ability of tuberculin skin tests and IGRAs to identify persons at 
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the highest risk of progressing to active tuberculosis (i.e., the 
positive and negative predictive values) is poor. Neither test 
can reliably predict future disease among persons with positive 
tests, and strong positive tests do not suggest a higher risk. In 
one metaanalysis, the pooled positive predictive value for 
progression to active tuberculosis was 2.7% (95% confidence 
interval [CI], 2.3 to 3.2) for IGRAs and 1.5% (95% CI, 1.2 to 
1.7) for the tuberculin skin test. A metaanalysis of only 
longitudinal studies of IGRAs, with a median followup of 4 
years, showed a moderate association between positive tests 
and subsequent tuberculosis (pooled, unadjusted incidence 
ratio, 2.10 [95% CI, 1.42 to 3.08]).30 In a 2year prospective 
study in the India involving adult contacts of persons with 
active tuberculosis, a positive IGRA was associated with a 
significantly higher risk of the development of tuberculosis 
except among contacts older than 35 years of age. The 
comparative performance of the tuberculin skin test and IGRAs 
varies between highincidence countries and lowincidence 
countries, possibly because of the effects of BCG vaccination 
and reinfection. Computed tomography might prove to be a 
promising complementary imaging method to chest 
radiography in distinguishing latent tuberculosis infection from 
active disease.32 Although currently no standard 
immunodiagnostic biomarkers have been identified to measure 
latent tuberculosis infection, there is a growing landscape of 
chemokines, tumor necrosis factor, interleukins, growth factors, 
and soluble receptors under development that could improve 
diagnostic capacity. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Treatment 
 

The aim of the treatment of latent tuberculosis infection is the 
prevention of progression to active clinical disease. Isoniazid 
administered daily for 6 to 12 months has been the mainstay of 
treatment, with efficacy ranging from 60 to 90%. Reanalysis 
and modeling of the U.S. Public Health Service isoniazid trials 
of the 1950s and 1960s showed that the benefit of isoniazid 
increases progressively when it is administered for up to 9 or 
10 months and stabilizes thereafter. As a consequence, in the 
absence of controlled, clinical trials comparing isoniazid with 
placebo, the 9month isoniazid regimen has been recommended 
as adequate treatment. However, a metaanalysis of 11 isoniazid 
trials involving 73,375 HIVuninfected persons showed that, as 

compared with placebo, the risk of progression to active 
tuberculosis at 6 months (relative risk, 0.44; 95% CI, 0.27 to 
0.73) is similar to that at 12 months (relative risk, 0.38; 95% 
CI, 0.28 to 0.50). Isoniazid was associated with a reduction in 
the incidence of tuberculosis among persons with HIV who 
were receiving antiretroviral therapy, and one study showed the 
benefit of isoniazid in patients with negative tuberculin skin 
tests or IGRAs who were also receiving antiretroviral therapy. 
A recent study from Uganda showed a high rate of conversion 
from a negative tuberculin skin test to a positive tuberculin skin 
test (30 cases per 100 personyears) among persons with HIV 
during the first 6 months of antiretroviral therapy. In 
geographic areas known for a high rate of transmission of 
tuberculosis, the protective effect of isoniazid against 
tuberculosis among people with HIV wanes over time, and 
continuous protection is maintained through a lifetime duration 
of treatment for tuberculosis. The World Health Organization 
recommends that HIVinfected persons in countries with high 
rates of transmission of tuberculosis receive at least 36 months 
of isoniazid as a proxy for lifelong treatment. In Brazil, a 
country with low rates of transmission of tuberculosis, 
isoniazid therapy for 6 months has been shown to have 
longterm protective benefits in HIVinfected adults. Other 
effective regimens are daily rifampin for 3 or 4 months, daily 
isoniazid and rifampin for 3 months, and isoniazid (900 mg) 
and rifapentine (900 mg) once weekly for 12 weeks. A regimen 
of rifampin and pyrazinamide that was initially shown to be 
effective in people with HIV infection was found to cause  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
severe liver injury in HIV uninfected people; thus, it is no 
longer recommended. In a multicenter, randomized clinical 
trial, a regimen of daily rifampin for 4 months was associated 
with fewer serious adverse events and better adherence and was 
more costeffective than a 9month regimen of isoniazid. 
Regimens containing rifampin should be considered for 
persons who are likely to have been exposed to an isoniazid 
resistant strain of M. tuberculosis. In one study, the efficacy of 
a once weekly, directly observed isoniazid–rifapentine regimen 
for 3 months was similar to that of a 9month, selfadministered 
regimen of isoniazid alone and was associated with higher 
treatment completion rates (82.1% vs. 69.0%) and less 
hepatotoxicity (0.4% vs. 2.7%), although permanent 

Table 1 Incidence of Active Tuberculosis and Prevalence of Latent Tuberculosis Infection in Selected High-Risk Groups, 
According to Published Studies 

 

High-Risk Group 
Incidence of Active 

Tuberculosis 
Prevalence of Latent Tuberculosis Infection† 

  
QuantiFERON-TB 

Gold In-Tube 
T-SPOT.TB Tuberculin 

 
median rate 

per 1000 population (range) 
median percentage (range) 

Persons with HIV infection 16.2 (12.4–28.0) 14.5 (2.7–21.5) 11.3 (4.3–67.6) 19.2 (2.1–54.8) 
Adult contacts of persons with tuberculosis 0.6‡ 21.1 (6.6–55.1) 48.0 (29.6–59.6) 26.3 (1.8–82.7) 

Patients receiving tumor necrosis factor 
blockers 

1.4‡§ 11.8 (4.0–22.3) 20.0 (12.9–25.0) 18.6 (11.3–68.2) 

Patients undergoing hemodialysis 26.6 (1.3–52.0) 33.4 (17.4–44.2) 43.6 (23.3–58.2) 21.9 (2.6–42.1) 
Patients undergoing organ transplantation 5.1‡ 21.9 (16.4–23.5) 29.5 (20.5–38.5) 7.7 (4.4–21.9) 

Patients with silicosis 32.1‡ 46.6‡ 61.0‡ - 
Prisoners 2.6 (0.03–9.8) - - 45.5 (23.1–87.6) 

Health care workers 1.3 (0.4–4.1) 14.1 (0.9–76.7) 5.2 (3.5–28.7) 29.5 (1.4–97.6) 
Immigrants from countries with a high 

tuberculosis burden 
3.6 (1.3–41.2) 30.2 (9.8–53.8) 17.0 (9.0–24.9) 

39.7 (17.8–55.4) 
 

Homeless persons 2.2 (0.1–4.3) 53.8 (18.6–75.9) - 45.6 (20.5–79.8) 
Illicit-drug users 6.0‡ 63.0 (1.4–66.4) 45.8 (34.1–57.5) 85.0 (0.3–86.7) 
Elderly persons - 16.3‡ - 31.7‡ 
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discontinuation of the regimen due to side effects was more 
frequent with the isoniazid–rifapentine regimen (4.9% vs. 
3.7%). Similar results were observed in a study involving 1058 
children 2 to 17 years of age; however, hepatotoxic effects 
attributed to treatment were not observed in either study group. 
A followup study involving HIV infected persons showed that 
the 3month isoniazidrifapentine regimen was as effective as the 
9month isoniazid regimen and was associated with a higher 
treatmentcompletion rate (89% vs. 64%).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The weekly isoniazid rifapentine regimen was also evaluated in 
1148 South African adults who had HIV infection and a 
positive tuberculin skin test and were not receiving 
antiretroviral therapy; the efficacy of that regimen was shown 
to be similar to a 6month isoniazid regimen. Recent studies of 
interactions between rifapentine, with or without isoniazid, and 
efavirenz showed that coadministration of efavirenz for the 
treatment of HIV infection did not result in reduced efavirenz 
exposure that could jeopardize antiviral activity. A fixeddose 

combination of rifapentine (300 mg) and isoniazid (300 mg) is 
expected to be marketed soon in tablet form, which will 
facilitate treatment. The 3month isoniazid–rifapentine regimen 
may be a costeffective alternative to the 9month isoniazid 
regimen, particularly if the cost of rifapentine decreases and the 
treatment is selfadministered. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Currently, the 3month isoniazid– rifapentine regimen is not 
recommended for children younger than 2 years of age, persons 
with HIV infection who are receiving antiretroviral therapy, 
and women who are pregnant. A few small studies have 
explored treatment of latent tuberculosis infection in contacts 
(both children and adults) of persons with multidrugresistant 
tuberculosis on the basis of the results of drugsusceptibility 
testing of the source patient. However, evidence is lacking on 
the best treatment approach. Rather, strict observation and 

Table 2 Regimens for Latent Tuberculosis Treatment, According to Pooled Efficacy, Risk of Hepatotoxicity, Adverse Events, 
and Drug Interactions 

 

Drug Regimen Dosage 
Efficacy vs. 

Placebo* 
Efficacy vs. 

6 Mo of Isoniazid* 
Hepatotoxicity vs. 
6 Mo of Isoniazid* 

Adverse Events 

  odds ratio (95% confidence interval)  

Isoniazid alone 
for 6 mo or 

9 mo 
 

Adults, 5 mg/kg; children, 
10 mg/kg 

(maximum, 300 mg) 
 

6-mo regimen, 
0.61 (0.48– 
0.77); 9-mo 

regimen, 0.39 
(0.19–0.83) 

Not applicable for 
6-mo regimen, 

and not available 
for 9-mo 

Not applicable for 
6-mo regimen, 

and not available 
for 9-mo 
regimen 

Drug-induced liver injury, regimen 
nausea, vomiting, abdominal 

pain, rash, peripheral 
neuropathy, dizziness, 

drowsiness, and seizure 

Rifampin alone 
for 3 to 4 mo 

Adults, 10 mg/kg; 
children, 10 mg/kg 

(maximum if <45 kg, 
450 mg; maximum if 

≥45 kg, 600 mg) 

0.48 (0.26–0.87) 0.78 (0.41–1.46) 0.03 (0.00–0.48) 

Influenza-like syndrome, rash, drug-induced 
liver injury, anorexia, nausea, 
abdominal pain, neutropenia, 

thrombocytopenia, and renal reactions (e.g., 
acute tubular necrosis 

and interstitial nephritis) 

Isoniazid plus 
rifampin for 

3 to 4 mo 

Adults, 10 mg/kg; 
children, 10 mg/kg 

(maximum if <45 kg, 
450 mg; maximum if 

≥45 kg, 600 mg) 

0.52 (0.33–0.84) 0.89 (0.65–1.23) 0.89 (0.52–1.55) 

Influenza-like syndrome, rash, drug-induced 
liver injury, anorexia, nausea, abdominal 
pain, neutropenia, thrombocytopenia, and 

renal reactions (e.g., 
acute tubular necrosis 

and interstitial nephritis) 

Weekly rifapentine 
plus isoniazid 

for 3 mo 

Adults and children: 
rifapentine, 15–30 
mg/kg (maximum, 

900 mg)‡; isoniazid, 
15 mg/kg (maximum, 

900 mg) 

Not available 0.44 (0.18–1.07)§ 0.16 (0.10–0.27)§ 

Hypersensitivity reactions, 
petechial rash, drug-induced liver injury, 

anorexia, nausea, abdominal 
pain, and hypotensive reactions 

 

Table 3 Common Drugs That Could Interact with the Regimen 
 

Antiretroviral Agents 
Opioids and 

Immunosuppressants 
Other 

Efavirenz (efavirenz levels may increase 
in slow metabolizers of both drugs) 

None 
Carbamazepine, benzodiazepines metabolized by oxidation (e.g., triazolam), 
acetaminophen, valproate, serotonergic antidepressants, disulfiram, warfarin, 

and theophylline 
Efavirenz†; dolutegravir (dolutegravir dose 
should be increased to 50 mg every 12 hr); 
rifampin should not be administered with 

any protease inhibitor (regardless of 
ritonavir boosting), rilpivirine, elvitegravir, 

or maraviroc 

Methadone (methadone dosage 
may need to be increased 50%); 
cyclosporine; glucocorticoids 

Mefloquine, azole antifungal agents, clarithromycin, erythromycin, 
doxycycline, atovaquone, chloramphenicol, hormone-replacement therapy, 

warfarin, cyclosporine, glucocorticoids, anticonvulsant drugs, cardiovascular 
agents (e.g., digoxin), theophylline, sulfonylurea hypoglycemic agents, 

hypolipidemic agents, nortriptyline, haloperidol, quetiapine, benzodiazepines, 
zolpidem, and buspirone 

Efavirenz†; dolutegravir (dolutegravir dose 
should be increased to 50 mg every 12 hr); 

isoniazid plus rifampin should not be 
administered with any protease inhibitor 

(regardless of ritonavir boosting), 
rilpivirine, elvitegravir, or maraviroc 

Methadone (methadone dosage 
may need to be increased 50%); 
cyclosporine; glucocorticoids 

Mefloquine, azole antifungal agents, clarithromycin, erythromycin, 
doxycycline, atovaquone, chloramphenicol, 

hormone-replacement therapy, warfarin, cyclosporine, glucocorticoids, 
anticonvulsant drugs, cardiovascular agents (e.g., digoxin), theophylline, 
sulfonylurea hypoglycemic agents, hypolipidemic agents, nortriptyline, 

haloperidol, quetiapine, benzodiazepines, zolpidem, and buspirone 
Rifapentine plus isoniazid should not be 

administered with any protease inhibitors, 
any integrase inhibitors, or maraviroc; early 
studies show nonsignificant interactions with 

dolutegravir, emtricitabine, and tenofovir 

Methadone (methadone dosage 
may need to be increased 50%); 

cyclosporine; glucocorticoids 

Mefloquine, azole antifungal agents, clarithromycin, erythromycin, doxycycline, 
atovaquone, chloramphenicol, hormone-replacement therapy, warfarin, cyclosporine, 

glucocorticoids, anticonvulsant drugs, cardiovascular agents (e.g., digoxin), theophylline, 
sulfonylurea hypoglycemic agents, hypolipidemic agents, nortriptyline, haloperidol, 

quetiapine, benzodiazepines, zolpidem, and buspirone 
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monitoring for at least 2 years for the development of active 
tuberculosis disease are the preferred clinical measures. 
 

Clinical Evaluation and Monitoring 
 

The clinical management of latent tuberculosis infection starts 
with tuberculin skin testing, IGRAs, or both and careful clinical 
and radiologic evaluation to rule out active tuberculosis 
disease. Persons receiving treatment should be educated about 
the potential toxic effects of the medications and counseled to 
stop treatment and seek attention if signs or symptoms such as 
jaundice, abdominal pain, severe nausea, or fever develop. 
Hepatotoxicity and clinical hepatitis are serious adverse events 
associated with drugs that are currently used for the treatment 
of tuberculosis (Table 2). Unfortunately, there is a paucity of 
data on the role of baseline tests and the reasonable frequency 
of visits to monitor adverse events. The role of the tests and the 
frequency of visits should be defined on the basis of the clinical 
indications and social profile of the person being treated, as 
well as the capacity of clinical services. Initial screening with 
liverfunction tests and regular measurement of liver function 
afterward could facilitate clinical management. Persons with 
underlying liver disease, those receiving antiretroviral therapy, 
women who are pregnant or post partum, alcohol abusers, or 
persons who are receiving longterm treatment with potentially 
hepatotoxic medications should be given priority for regular 
liverenzyme monitoring. Clinical management of latent 
tuberculosis infection should also address such concomitant 
risk factors as illicitdrug use, alcohol abuse, and smoking 
through opioidsubstitution treatment and counseling about 
alcohol and smoking cessation, respectively. Table 2 
summarizes the common drug interactions associated with 
latent tuberculosis infection treatment that warrant attention. 
Acceptance of and adherence to the full course of latent 
tuberculosis treatment must be encouraged. In a study 
conducted in the United States and Canada, 17% of persons 
who were offered treatment for latent infection refused it. 
Treatment completion varies widely (from 19% to 96%), and 
the reasons for noncompletion need to be fully assessed. The 
use of various incentives to promote treatment initiation and 
adherence, depending on the specific need of the person being 
treated, should be considered. Peer education, counseling, 
peoplefriendly services, and properly trained service providers 
boost confidence and may improve adherence to treatment. 
 

Logistic Regression: Model and Notation 
 

In logistic regression, a single outcome variable Yi (i = 1, . . . , 
n) follows a Bernoulli probability function that takes on the 
value 1 with probability πi and 0 with probability 1 − πi . Then 
πi varies over the observations as an inverse logistic function of 
a vector xi , which includes a constant and k − 1 explanatory 
variables: 
 

Yi ~ Bernoulli (Yi  /πi) 
 

πi = 
�

������β
                                                                                (1) 

 

The Bernoulli has probability function P(Yi | πi ) = ��
��(1��)

1Yi. 
The unknown parameter β = (β0, ��

′ )’ is a k × 1 vector, where β0 
is a scalar constant term and β1 is a vector with elements 
corresponding to the explanatory variables. 
 

An alternative way to define the same model is by imagining 
an unobserved continuous variable ��

∗ (e.g., health of an 

individual or propensity of a country to go to war) distributed 
according to a logistic density with mean μi . Then μi varies 
over the observations as a linear function of xi . The model 
would be very close to a linear regression if 	��

∗ were observed: 
 

��
∗~	��������	(Yi  /πi ) 

 

��	= x�β                                                                                  (2) 
 

where Logistic(��
∗ |μi ) is the oneparameter logistic probability 

density, 
 

p (Y�
∗ ) = 

��(��
∗�μ�)

(���
�(��

∗�μ�))�
                                                              (3) 

 

Unfortunately, instead of observing Y�
∗, we see only its 

dichotomous realization, Yi, where Yi = 1 if  Y�
∗ >0 and Yi = 0 if 

Y�
∗ ≤0. For example, if Y�

∗  measures health, Yi might be dead 
(1) or alive (0). If Y�

∗ were the propensity to go to war, Yi could 
be at war (1) or at peace (0). The model remains the same 
because 
 

Pr(Yi = 1 | β) = πi = Pr(Y�
∗i > 0 | β) 

= ∫ Logistic	(Y�
∗/	��	)

∞

�
 d (Y�

∗ ) = 
�

������β
                                 (4) 

 

which is exactly as in Eq. (1). We also know that the 
observation mechanism, which turns the continuous Y* into the 
dichotomous Yi , generates most of the mischief. That is, we 
ran simulations trying to estimate β from an observed Y * and 
model 2 and found that maximumlikelihood estimation of β is 
approximately unbiased in small samples. The parameters are 
estimated by maximum likelihood, with the likelihood function 
formed by assuming independence over the observations: L(β | 

y) = ∏ ��
��(1 − ��

�
��� )����  

 

By taking logs and using Eq. (1), the loglikelihood simplifies to 
 

ln L(β | y) = ∑ ln(��{����}
)+	∑ ln(1 − ��{����}

)   

                = ∑ ln(1 + �(�����)����
��� )                                     (5) 

 

Maximumlikelihood logit analysis then works by finding the 
value of β that gives the maximum value of this function, 

which we label ��. The asymptotic variance matrix, V(��), is 
also retained to compute standard errors. When observations 
are selected randomly, or randomly within strata defined by 

some or all of the explanatory variables, �� is consistent and 
asymptotically efficient (except in degenerate cases of perfect 
collinearity among the columns in X or perfect discrimination 
between zeros and ones). That in rare events data ones are more 
statistically informative than zeros can be seen by studying the 
variance matrix, 
 

V(��) = [∑ 	��(1 − ��
�
��� )��

�	��]
��                                           (6) 

 

The part of this matrix affected by rare events is the factor πi (1 
− πi ). Most rare events applications yield small estimates of 
Pr(Yi =1 | xi)=πi for all observations. However, if the logit 
model has some explanatory power, the estimate of πi among 
observations for which rare events are observed (i.e., for which 
Yi = 1) will usually be larger [and closer to 0.5, because 
probabilities in rare event studies are normally very small refer 
to Beck et al. 2000)] than among observations for which Yi = 0. 
The result is that πi (1−πi) will usually be larger for ones than 
zeros, and so the variance (its inverse) will be smaller. In this 
situation, additional ones will cause the variance to drop more 
and hence are more informative than additional zeros (refer to  
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Imbens (1992), Cosslett (1981a); Lancaster and Imbens 
(1996b). Finally, we note that the quantity of interest in logistic 

regression is rarely the raw ��  output by most computer 
programs. Instead, scholars are normally interested in more 
direct functions of the probabilities. For example, absolute risk 
is the probability that an event occurs given chosen values of 
the explanatory variables, Pr(Y = 1 | X = x). The relative risk is 
the same probability relative to the probability of an event 
given some baseline values of X, e.g., Pr(Y =1 | X =1)/ Pr(Y =1 | 
X =0), the fractional increase in the risk. This quantity is 
frequently reported in the popular media (e.g., the probability 
of getting some forms of cancer increase by 50% if one stops 
exercising) and is common in many scholarly literatures. In 
political science, the term is not often used, but the measure is 
usually computed directly or studied implicitly. Also of 
considerable interest is the first difference (or attributable risk), 
the change in probability as a function of a change in a 
covariate, such as Pr(Y =1 | X =1)−Pr(Y =1 | X =0). The first 
difference is usually most informative when measuring effects, 
whereas relative risk is dimensionless and so tends to be easier 
to compare across applications or time periods.  
 

Selection of dependent variable and Data collection strategies  
 

When one of the values of Y is rare in the population, 
considerable resources in data collection can be saved by 
randomly selecting within categories of Y . This is known in 
econometrics as choicebased or endogenous stratified sampling 
and in epidemiology as a casecontrol design (Breslow 1996); 
The casecohort study is especially appropriate when adding an 
expensive variable to an existing collection, such as the dyadic 
data discussed above and analyzed below, or Verba and 
coworkers’ (1995) detailed study of activists, each of which 
was culled from a larger random sample, with very few 
variables, of the entire U.S. population. In this paper, the author 
use information on the population fraction of ones when it is 
available, and so the same models we describe apply to both 
casecontrol and casecohort studies. 
 

Selecting on the dependent variable in the way we suggest has 
several pitfalls that should be carefully avoided. First, the 
sampling design for which the prior correction and weighting 
methods are appropriate requires independent random (or 
complete) selection of observations for which Y = 1 and Y = 0. 
This encompasses the casecontrol and casecohort studies, but 
other endogenous designs such as sampling in several stages, 
with nonrandom selection, or via hybrid approaches require 
different statistical methods. Second, when selecting on Y , we 
must be careful not to select on X differently for the two 
samples. The classic example is selecting all people in the local 
hospital with liver cancer (Y = 1) and a random selection of the 
U.S. population without liver cancer (Y = 0). The problem is 
that the sample of cancer patients selects on Y = 1 and 
implicitly on the inclination to seek health care, find the right 
medical specialist, have the right tests, etc. Not recognizing the 
implicit selection on X is the problem here. Since the Y = 0 
sample does not similarly select on the same explanatory 
variables, these data would induce selection bias. One solution 
in this example might be to select the Y = 0 sample from those 
who received the same liver cancer test but turned out not to 
have the disease. This design would yield valid inferences, 
albeit only for the health conscious population with liver 
cancerlike symptoms. Another solution would be to measure 

and control for the omitted variables. This type of inadvertent 
selection on X can be a serious problem in endogenous designs, 
just as selection on Y can bias inferences in exogenous designs. 
Moreover, although in the social sciences random (or 
experimenter control over) assignment of the values of the 
explanatory variables for each unit is occasionally possible in 
exogenous or random sampling (and with a large n is generally 
desirable since it rules out omitted variable bias), random 
assignment on X is impossible in endogenous sampling. 
Fortunately, bias due to selection on X is much easier to avoid 
in applications such as international conflict and related fields, 
since a clearly designated census of cases is normally available 
from which to draw a sample. Instead of relying on the 
decisions of subjects about whether to come to a hospital and 
take a test, the selection into the data set in our field can often 
be entirely determined by the investigator. Refer to Holland 
and Rubin (1988). Third, another problem with intentional 
selection on Y is that valid exploratory data analysis can be 
more hazardous. In particular, one cannot use an explanatory 
variable as a dependent variable in an auxiliary analysis 
without special precautions (see Nagelkerke et al. 1995). 
Finally, the optimal tradeoff between collecting more 
observations versus better or more explanatory variables is 
application specific, and so decisions will necessarily involve 
judgment calls and qualitative assessments. Fortunately, to help 
guide these decisions in fields like international relations we 
have large bodies of work on methods of quantitative 
measurement and, also, many qualitative studies that measure 
hardtocollect variables for a small number of cases. 
 

Prior Correction 
 

Prior correction involves computing the usual logistic 
regression MLE and correcting the estimates based on prior 
information about the fraction of ones in the population, τ, and 
the observed fraction of ones in the sample (or sampling 
probability), y�. Knowledge of τ can come from census data, a 
random sample from the population measuring Y only, a 
casecohort sample, or other sources. 
 

Prior correction requires knowledge of the fraction of ones in 
the population, τ. Fortunately, τ is straightforward to determine 
in international conflict data since the number of conflicts is the 
subject of the study and the denominator, the population of 
countries or dyads, is easy to count even if not entirely in the 
analysis.4 A key advantage of prior correction is ease of use. 
Any statistical software that can estimate logit coefficients can 
be used, and Eq. (7) is easy to apply to the intercept. If the 
functional form and explanatory variables are correct, estimates 
are consistent and asymptotically efficient. The chief 
disadvantage of prior correction is that if the model is 
misspecified, estimates of both β0 and β1 are slightly less 
robust than weighting refer to Xie and Manski (1989), a 
method to which we now turn. 
 

Weighting 
 

An alternative procedure is to weight the data to compensate 
for differences in the sample (y�) and population (τ) fractions of 
ones induced by choice based sampling. The resulting weighted 
exogenous sampling maximum likelihood estimator (due to 
Manski and Lerman (1977) is relatively simple. Instead of 
maximizing the loglikelihood in Eq. (5), we maximize the 
weighted loglikelihood: 
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ln Lw(β | y) =ω� ∑ ln(π�{����}
)+	ω� ∑ ln(1 − π�{����}

)   

                   = −∑ ω�ln(1 + e(�����)����
��� )                            (8) 

 

where the weights are ω� = τ/	y� and ω� = (1 − τ )/(1 − y�), and 
where 
 

= ω�	Y� + ω�	(1 − Y�)	                                                            (9) 
 

One perceived disadvantage of this model has been that it 
seemed to require specialized software for estimation. 
However, the alternative expression in the second line of Eq. 
(8) enables researchers to use any log it package, since the 
weight, ω�, appears in one term. All researchers need to do is to 
calculate ω� in Eq. (8), 
 

Rare Event and Finite Sample Corrections 
 

Let x0 be a 1 × k vector of chosen values of the explanatory 
variables. The nearly universal method used for computing the 
probability, given x0, is a function of the maximum likelihood 

estimate, ��, 
 

Pr(Y0 = 1 | ��) = π�0 = 
�

�������
�																																																							 (10) 

 

and is thus statistically consistent. 
 

Unfortunately, the method of computing probabilities given in 
Eq. (10) is affected by two distinct problems in finite samples 

of rare events data: First, �� is a biased estimate of β. Second, 

even if �� were unbiased, Pr (Y0 = 1 | �� ) would still be, as we 
show below, an inferior estimator of             Pr(Y0 = 1 | β). 
 

Estimation 
 

The bias in β� can be estimated by the following weighted least 
squares expression:  
 

bias (β�) = (X’ WX)−1X’ Wξ                                                   (11) 
 

where ξi = 0.5Qii [(1+w1)	π� i−w1], Qii are the diagonal elements 
of Q = X(X_WX)−1X_, and W = diag{	π� i (1 −	π� i)wi }. This 
expression is easy to estimate, as it involves running a 
weighted least squares regression with X as the “explanatory 
variables,” ξ as the “dependent variable,” and Was the weight. 

The biascorrected estimate is then β�  = β�-bias (β�). 
 

The special case with a constant term and one explanatory 
variable, and with β0 estimated and β1 = 1 fixed: Pr(Yi = 1) = 
1/(1 + e−(β0+Xi )). For this case,  
 

bias in β�0, where π	�= (1/n) ∑ π�
�
��� , as  

E(β�0 − β0) ≈
π�	�	�.�

�π�	(��π�)
                                                                 (12) 

 

Since π�< 0.5 in rare events data, the numerator, and thus the 
entire bias term, is negative. 
 

This means that β�0 is too small and, as a result, Pr(Y = 1) is 
underestimated, which is consistent with what we argued 
intuitively above and show via Monte Carlo experiments 
below. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Probability Calculations 
 

This section concerns estimating the probability π in Eq. (1). 

Since β�  is less biased and has smaller variance, and hence has 

a smaller mean square error, than β�, 
 

π�0 = Pr (Y0 = 1 | β�  ) = 
�

�����β�
                                                 (13) 

 

is usually preferable to π� [from Eq. (10)]. However, π� is still 

not optimal because it ignores the uncertainty in β�  (e.g., 
Geisser 1993; King et al. 2000). This uncertainty can be 

thought of as sampling error or the fact that β�   is estimated 
rather than known, and it is reflected in standard errors greater 
than zero. In many cases, ignoring estimation uncertainty 
leaves the point estimate unaffected and changes only its 
standard error. However, because of the nature of π as a 
quantity to be estimated, ignoring uncertainty affects the point 
estimate too. Thus, instead of conditioning on an uncertain 
point estimate with π˜ , we should be conditioning only on 
known facts and averaging over the uncertainty in ˜β as 
follows: 
 

Pr(Yi = 1) = ∫ Pr(Yi = 1 | β*)p(β*)P( β*) d β*                       (14) 
 

 
Fig 1 The effect of uncertainty on probabilities. Although the 
dotted density (which does not reflect uncertainty in β) has a 
smaller variance than the one drawn with a solid line (which 
has the uncertainty about β added in), the mean μ stays the 
same in both. However, the probability, the shaded area to the 
right of the zero threshold in the two curves, differs. 
 

where β∗ is the integration dummy, and to summarize 
estimation uncertainty P(·) we take the Bayesian viewpoint and 

use the posterior density of β Normal [β |β�, V(β�)] (although it 
will turn out that we will not need this normality assumption). 
The estimation uncertainty P(·) can also be thought of from a 
frequentist perspective as the sampling distribution of ˜β so that 

Eq. (14) is the expected value E β� [Pr(Yi = 1 | β�)], which is an 
estimate of πi = Pr(Yi = 1 | β) = 1/(1 + e−xiβ). 
Equation (14) can be computed in two ways. First, we could 
use simulation (see Tanner 1996; King et al. 2000): take a 
random draw of β from P(β), insert it into [1 + e−xiβ]−1, repeat, 
and average over the simulations. Increasing the number of 
simulations enables us to approximate Pr (Yi = 1) to any 
desired degree of accuracy. 
 

A second method of computing Eq. (14) is through an 
analytical approximation we have derived. It is more 
computationally efficient than the simulation approach, is easy 
to use, and helps illuminate the nature of the correction. This 
result, proven in Appendix E, shows that Eq. (14) may be 
approximated without simulation as 
 

Pr(Yi = 1) ≈ π�i + Ci                                                               (15) 
 

where the correction factor is 
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Ci = (0.5 −π�i) π�i (1 −π�i)x0V(β�  )x�
�                                         (16) 

 

Standard errors or confidence intervals can easily be computed 
as part of the simulation in the first approach or by simulating 
each component of Ci in the second. 
 

Analyses 
 

We first generated n observations from a logistic regression 
model with a constant and one explanatory variable drawn 
from a standard normal density, for fixed parameters β0 and β1 
= 1. For each i, we drew a random uniform number u and 
assigned Yi = 1 if πi < u and Yi = 0 otherwise. We set the 
sample size to 
n = {150, 250, 550, 1100, 2100, 3100, 4100, 5100, 12,000, 
22,000} 
and intercept to 
β0 = {−7,−6,−5,−4,−3,−2,−1, 1} 
 

These values of β generate y vectors with the percentages of 
ones equaling         (100 × ��)% = {0.15, 0.4, 1.1, 2.8, 6.9, 15.6, 
30.4, 50} respectively. We excluded experiments with both 
very small percentages of ones and small sample sizes so as to 
avoid generating y vectors that are all zeros. This mirrors the 
common practice of studying rarer events in larger data sets. 
For each of these experiments, we computed the maximum 
difference in absolute risk by first taking the difference in 
estimates of Pr(Y = 1 | X = x) between the traditional logit 
model and our preferred approximate Bayesian method, for 
each of 31 values of x, equally spaced between −5 and 5, and 
then selecting the maximum. We also computed one relative 
risk, where we changed X from −1 to 1: Pr(Y = 1 | X = 1)/ Pr(Y 
= 1 | X = −1). The pair of X values, {−1, 1}, defines a typical 
relative risk that might be computed in examples like this, since 
it is at plus and minus one standard deviation of the mean of X, 
but it is of course neither the maximum nor the minimum 
difference in relative risk that could be computed between the 
two methods. Finally, for each Monte Carlo experiment, we 
computed the maximum absolute risk and the relative risk 
averaged over 1000 simulated data sets. We have repeated this 
design with numerous other values of n, β0, and β1, and 
explanatory variables in different numbers and drawn from 
different (including asymmetric and partially discrete) 
densities. We also computed different absolute and relative 
risks. These other experiments led to similar conclusions as 
those presented here.  
 
The properties of the coefficients and standard errors of logistic 
regression with and without our corrections, and for both 
cohort and casecontrol designs. With β0 = −4 (i.e., about 2.8% 
ones) and n = 1000, and then successively drop {0, 0.225, 0.45, 
0.675, 0.9} fractions of observations with zeros. Since it has 
been well studied by Xie and Manski (1989), and are shown in 
fig.2.  
 

The correction bias in standard errors, RMSE in probability 
estimates full sample, Bias in probability estimates full sample 
and RMSE of probability estimates Subsampled data and 
RMSE of relative risk estimates: subsampled data.  For the 
simulated data are show in Fig. 3, Fig.4, Fig.4, Fig.5, Fig.6.  
 

 
 

Fig 2 Correcting bias in logit coefficients. 
 

 

 
 

Fig 3 Correcting bias in standard errors 
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Fig 4 RMSE in probability estimates: full sample, Bias in probability estimates: 
full sample 

 

 
 

Fig 5 RMSE of probability estimates: subsampled data. 

 

 
 

Fig 6 RMSE of relative risk estimates: subsampled data. 
 

Binary Logistic Regression Approach 
 

Logistic regression is an alternative to discriminant analysis 
due to several reasons, whenever the dependent variable has 
only two categories. The first reason is that logistic regression 
is less affected by the variance/ covariance inequalities across 
the groups. Secondly logistic regression can handle categorical 
independent variables easily, whereas in discrimnant analysis 
the use of dummy variables can create problems. Finally 
logistic regression results are parallel to those of multiple 
regression in terms of their interpretation. In logistic regression 
there are no assumptions such as multivariate normality, equal 
variance covariance matrices. In discriminant analysis the non 
metric character of a dichotomous dependent variable is 
accommodate by making predictions of group membership 
based on discriminant Z scores. This requires the calculations 
of cutting scores and the assignment of observation to groups. 
Logistic regression approaches this task in a manner more 
similar to that found in multiple regression. It differs from 
multiple regression in the sense that it directly predicts the 
probability of an event occurring. To define a relationship 
bounded by zero and one. Logistic regression uses an assumed 

relationship between the independent and dependent variables 
that resembles a Sshaped curve. 

 

Let y be a cluster n binary observations yj (j = 1, ...., n) with xj 
being a  
p  1 covariate.  Denote by y. the sum of the yj

’ s.  Rosner 
(1984) proposed a polychotomous logistic regression model 
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where c is the normalizing constant which involves a sum of 2n 
exponential terms.  It follows from equ. (1) that the logit 
conditional probability of yj = 1 given yj = (y1,...,yj1, yj+1,...,yn) 
and xj is such that  
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where wj = y.yj is the sum of the y’s excluding yj.  In other 
words, the conditional probability for yj = 1 in eqn. (1.2) 
depends on yj only through the sum.  The equ. (1.2) due to Qu 
et al. (1987) who point out that 2/(1+2), the common 
intraclass correlation when all the xj’s = 0, may be negative. 
 

In logistic regression procedure, the logistic coefficient 
compares the probability of an event occurring with the 
probability of its not occurring. This odds ratio is given as  
 

Odds	Ratio=
Probability	of	event	occuring

Probability	of	the	event	not	occuring
= e��������⋯�����  

 

Here X1, X2, …, Xn are in the independent or influencing 
variables and 0 is the constant intercept 1, 2, … , n are the 
estimated regression coefficients and they are measures of the 
changes in the ratio of the probabilities. 
 

Numerical Illustration 
 

The data were collected from 60 TB infected patients during 
Jan 2016 to Dec 2016 from the list of Revised National 
Tuberculosis Control Programme (RNTCP), Dharmapuri under 
the areas namely Harur, Paperiratipatti and Pennagram. 
Another 60 noninfected persons were enrolled for this study 
from the same region through the outpatient register of 
Government Medical College, Dharmapuri. Using this data set 
we fit binary logistic regression. In this present study the 
probability or chance of an individual to getting TB infection is 
computed as a function of a number of independent or 
influencing variables. The variables which are taken up under 
this model are follows 
Y = the dependent variable representing the desire or 
preparedness to leave the organization (0-yes, 1-no) 
X1 = age of the patient (0-≤ 30, 1->30) 
 X2 = gender (0-male, 1-female) 
X3 = marital status (0-unmarried, 1-evermarried) 
X4 = type of family (0-nuclear, 1-joint) 
X5 = education status (0-illiterate, 1-literate) 
X6 = occupation of the patient (0-Sedentary, 1-nonsedentary) 
X7 = type of house (0-kutcha, 1-pucca) 
X8 = family members (0-≤ 4, 1-> 4) 
X9 = percapita income (0-≤ 4500, 1-> 4500) 
X10 = body mass index (0-normal, 1-abnormal) 
X11 = smoker (0-yes, 1-no) 
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X12 = alcoholic (0-yes, 1-no) 
 

The variables which have an operative influence over the 
infection should have a significant partial regression 
coefficient. Such of these variables are alone retained in the 
model and all those variables which have significant regression 
coefficients may be classified as i) the demographic variables 
like age, sex, family type. etc, ii) the other variables which are 
based on psychological, environmental and other 
considerations are relevant from the view point of our study. 
The demographical variables are called the non control 
variables in the sense that their influence over the decision to 
leave the organization cannot be changed by intervention and 
strategies of retention. But in the case of certain variables like 
smoking habit, consumption of alcohol etc. some suitable 
remedial measures can be incorporated by the personnel. So 
that their risk over the infection of TB can be reduced and 
mended to a favorable status with the result that the intensity of 
the feeling to get infection can be changed and brought down. 
Hence such variables which are amenable to adjustment are 
called control variables.  
 

An advantage of the logistic regression approach is that, it 
helps as a prediction equation. In the present model the 
dependent variable namely Y = 0, if a particular individual is 
not prepared to leave the organization, where as if Y = 1, it 
indicates the person’s willingness to leave the organization. 
Also the independent variables which exercise significant 
influence over the Y value can be identified and isolated. Once 
the logistic regression equation is obtained on the basis of the 
data collected from the sample of respondents chosen for study, 
the mathematical form of the regression equation can be 
formulated. Then the same questionnaire can be given to a set 
of individuals or for all the personnel working in that 
organization. Collecting the relevant data from the individuals 
and using the same in the regression equation it is possible to 
identify, the chance of getting infection of TB.  
 

Table 1 Omnibus Tests of Model Coefficients 
 

 Chisquare df Sig. 

Step 1 

Step 3.297 12 0.306 

Block 3.297 12 0.306 

Model 3.297 12 0.306 
 

Table 2 Model Summary 
 

Step 2 Log likelihood 
Cox & Snell R 

Square 
Nagelkerke R 

Square 

1 378.572a .0.724 0.767 

Table 3 Hosmer and Lemeshow Test 
 

step ChiSquare df Sig. 

1 3.193 12 0.436 
 

Table 4 Variables in the Equation 
 

   S.E. Wald df Sig. Exp() 

Step 1a 

X1 0.004 0.011 3.304 1 0.032 1.005 

X2 0.156 0.521 0.059 1 0.593 1.167 

X3 0.202 0.501 3.031 1 0.031 0.705 

X4 0.156 0.786 3.045 1 0.023 0.745 

X5 0.014 0.518 4.002 1 0.065 1.021 

X6 0.323 0.411 3.000 1 0.019 0.290 

X7 0.007 0.511 0.000 1 0.886 0.981 

X8 0.002 0.610 0.000 1 0.898 1.000 

X9 0.146 1.257 0.011 1 0.802 1.123 

X10 0.075 0.299 0.035 1 0.731 1.059 

X11 0.262 0.699 5.012 1 0.001 1.815 

X12 0.298 0.529 5.001 1 0.001 1.881 

Constant 2.130 2.452 4.559 1 0.011 9.130 
 

It is seen that hosmer and lemshow test for finding the 
goodness of fit of the model for the data, in other words this 
model fit shows the computed value of chisquare statistic as 
3.193 with a corresponding significance value p=0.436. Since p 
value is greater than 0.05, it suggests that the logistic regression 
model fitted to the data is a good fit. A good model fit indicated 
by a non significant chisquare value. 
 

The results on the variables in the equation suggested that the 
independent variables namely 
 

X1 = age of the patient 
X3 = marital status 
X4 = type of family 
X6 = occupation of the patient 
X11 = smoker 
X12 = alcoholic 
 

have p values less that 0.05 and they are all significant there by 
implying that they have significant regression coefficients. 
Hence they all have influence over the chance to getting 
infection of TB. 0 is also significant. The regression 
coefficients for        X3 (3 = 0.202), X4 (4 = 0.156) and X6 (6 
= 0.323) are negative. Hence it implies these variables are 
having risk in manner or reversal order. Some of the variables 
X2, X5, X7, X8, X9 and X10 are make insignificant contribution 
with this regression equation and p values of these regression 
coefficients are more than 0.05. 
 

It may observe that the regression coefficient of the 
independent variables namely age, marital status, family type, 
occupational status, smoking habit and consumption of alcohol 
have influence over the incidence of TB. The other variables do 
not have significant regression coefficients. It may also be 
observed that among the influencing variables there are some 
variables which can be under control. For example smoking 
habit and consumption of alcohol can be discontinuous which 
in term will help the avoidance of TB. It is also possible to 
have the occupational status. The age, family type, marital 
status cannot be brought under control and hence the 
preventives strategies can be advocated in this study. 
 

CONCLUSION 
 

Based on the results discussed in the previous session, it is g 
generally observed that Better understanding of the 
pathogenesis of latent tuberculosis infection is a critical 
research priority, as is the development of biomarkers and 
diagnostic tests with improved performance and predictive 
values. The availability of new drugs and regimens that can be 
administered for a shorter duration and with fewer adverse 
events is imperative to allow largerscale implementation. Trials 
should be performed to define the benefits and harms of 
treatment for latent tuberculosis infection in patients with 
diabetes, in alcohol abusers and tobacco smokers, and in 
contacts of persons with multidrug resistant tuberculosis. 
Innovative research synergies between public and private 
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funders are required to overcome market shortcomings. The 
development of better diagnostic tests, preventive therapies, 
and vaccines for tuberculosis will confer enormous public 
benefit. 
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