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The exponential distribution possesses an essential position in lifetime distribution study. In this 
paper, an endeavor has been made to fit the Bayesian inference procedures for exponential 
distribution, exponentiated exponential and the two-parameter extension of exponential distribution. 
keeping in mind the end goal to actualize Bayesian techniques to examine and applied to a real 
survival censored data, visualization of lung cancer survival data and demonstrate through utilizing 
Stan. Stan is a high level language written in a C++ library for Bayesian modeling. This model 
applies to survival censoring data with the goal that every one of the ideas and calculations will be 
around similar data. Stan code has been created and enhanced to actualize a censored system all 
through utilizing Stan technique. Moreover, parallel simulation tools are also implemented and 
additionally actualized with a broad utilization of rstan. 
 
 
 
 
 
 

  

  
 

 
 

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

 
 

 
 
 

 
 

 
 

 
  
 
 
 

INTRODUCTION 
 

Survival analysis is the name for a collection of statistical 
techniques used to describe and quantify time to event data. In 
survival analysis we use the term failure to define the 
occurrence of the event of interest. The term ’survival time 
species’ is the length of time taken for failure to occur. Types 
of studies with survival outcomes include clinical trials, time 
from birth until death. Survival analysis arises in many fields of 
study including medicine, biology, engineering, public health, 
epidemiology and economics. In this paper, an attempt has 
been made to outline how Bayesian approach proceeds to fit 
exponential model, exponentiated exponential and exponential 
extension for lifetime data using Stan. The tools and techniques 
used in this paper are in Bayesian environment, which are 
implemented using rstan package. Exponential, Weibull and 
Gamma are some of the important distributions widely used in 
reliability theory and survival analysis. These families and their 
usefulness are described by Cox and Oakes (1984). But these 
distributions have a limited range of behavior and cannot 
represent all situations found in applications. For example; 
although the exponential distribution is often described as 
flexible, of the major disadvantages of the exponential 
distribution is that it has a constant hazard function. Stan is a 
probabilistic programming language for specifying statistical 

models. Bayesian inference is based on the Bayes rule which 
provides a rational method for updating our beliefs in the light 
of new information. The Bayes rule states that posterior 
distribution is the combination of prior and data information. It 
does not tell us what our beliefs should be, it tells us how they 
should change after seeing new information. The prior 
distribution is important in Bayesian inference since it 
influences the posterior. When no information is available, we 
need to specify a prior which will not influence the posterior 
distribution. Such priors are called weakly-informative or non-
informative, such as, Normal, Gamma and half-Cauchy prior, 
this type of priors will be used throughout the paper. The 
posterior distribution contains all the information needed for 
Bayesian inference and the objective is to calculate the numeric 
summaries of it via integration. In cases, where the conjugate 
family is considered, posterior distribution is available in a 
closed form and so the required integrals are straightforward to 
evaluate. However, the posterior is usually of non-standard 
form, and evaluation of integrals is difficult. For evaluating 
such integrals, various methods are available such as Laplace 
method and numerical integration methods of (Davis and 
Rabinowitz 1975, Evans and Swartz 1996). Simulation can also 
be used as an alternative technique. Simulation based on 
Markov chain Monte Carlo (MCMC) is used when it is not 
possible to sample θ directly from posterior p(θ|y). For a wide 
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class of problems, this is the easiest method to get reliable 
results (Gelman et al, 2014). Gibbs sampling, Hamiltonian 
Monte Carlo (HMC) and Metropolis-Hastings algorithm are the 
MCMC techniques which render difficult computational tasks 
quite feasible. HMC is much more computationally costly than 
are Metropolis or Gibbs sampling. But its proposals are 
typically much more efficient. A variant of MCMC techniques 
are performed such as independence Metropolis, and 
Metropolis within Gibbs sampling. To make computation 
easier, software such as R, Stan (full Bayesian inference using 
the No-U-Turn sampler (NUTS), a variant of Hamiltonian 
Monte Carlo (HMC)) are used. Bayesian analysis of proposal 
appropriation has been made with the following objectives: 
 

 To define a Bayesian model, that is, specification of 
likelihood and prior distribution. 

 To write down the R code for approximating posterior 
densities with Stan. 

 To illustrate numeric as well as graphic summaries of 
the posterior densities.  

 

The exponential Distribution 
 

The exponential distribution possesses an essential position in lifetime 
distribution study. Truly, the exponential distribution was the first 
lifetime show for which statistical techniques were widely created. It 
works by Sukhatme (1937) and later work by Epstein and Sobel 
(1953,1954) and Epstein (1954) gave numerous results and 
popularized the exponential as a lifetime distribution. Gupta and 
Kundu (2001). We recall the probability density function (pdf), 
cumulative distribution function (cdf), survival function S(t) and 
hazard function h(t) exponential distribution are given by (2.1), (2.2), 
(2.3) and (2.4), respectively, as in Figure(1)  

�(�) =
�

�
��

�

�;																				�,� > 0.                  (2.1) (2.1) 

�(�) = 1 − ��
�

�;																�,� > 0.                 (2.2) (2.2) 

�(�) = 1 − �(�) = ��
�

�;			�,� > 0.                (2.3) (2.3) 

ℎ(�) =
�(�)

�(�)
                                     (2.4)

 
 

Figure  1Probability density plots, cdf, survival and hazard curves of 
exponential model for different values of scale. 

 

The exponentiated exponential Distributions 
 

Gupta and Kundu (2001), presented the Exponentiated 
Exponential (Generalized Exponential) distribution. This 
family has lots of properties which are quite similar to those of 
a Gamma distribution but it has an explicit expression of the 
survival function like a Weiull distribution. Gupta and Kundu 

(2007) provided a detailed review and some developments on 
the Exponentiated Exponential distribution. The exponentiated 
exponential distributions are used widely in statistical practice. 
The two parameters of the exponentiated exponential 
distribution represents the shape and scale parameter Now, We 
recall the probability density function (pdf), cumulative 
distribution function (cdf), survival function S(t) and hazard 
function h(t) exponentiated exponential model are given as: as 
in Figure(2)  
 

f(t) =
�

�
e�

�

�(1 − e�
�

�)���;																	α,λ,t > 0.(2.5) 
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Figure  2 Probability density plots, cdf, survival and hazard curves of 
exponentiated exponential distributionfor different values of scale 

 

The exponential extension Distributions 
 

Gupta & Kundu (1999) and Gupta & Kundu (2001) introduced 
an extension of the exponential distribution. We recall the 
probability density function (pdf), cumulative distribution 
function (cdf), survival function S(t) and hazard function h(t) 
of exponential extension distribution are given by (2.9), (2.10), 
(2.11) and (2.12), respectively, as in Figure(3)  
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Figure  3Probability density plots, cdf, survival and hazard curves of 
exponential extension distribution for different values of scale 

 

Bayesian Inference 
 

Gelman et al.,(2013) break applied Bayesian modeling into the 
following three steps: 
 

1. Set up a full probability model for all observable and 
unobservable quantities. This model should be 
consistent with existing knowledge of the data being 
modeled and how it was collected. 

2. Calculate the posterior probability of unknown 
quantities conditioned on observed quantities. The 
unknowns may include unobservable quantities such as 
parameters and potentially observable quantities such as 
predictions for future observations. 

3. Evaluate the model fit to the data. This includes 
evaluating the implications of the posterior. 

 

Typically, this cycle will be repeated until a sufficient fit is 
achieved in the third step. Stan automates the calculations 
involved in the second and third steps (Carpenter et al., 2017). 
We have to specify here the most vital in Bayesian inference 
which are as per the following : 
 

• Prior Distribution: �(�): The parameter θ can set a 
prior distribution elements that using probability as a 
means of quantifying uncertainty about θ before taking 
the data into acount. 

• Likelihood �(�|�): likelihood function for variables are 
related in full probability model. 

• Posterior distribution �(�|�): is the joint posterior 
distribution that expresses uncertainty about parameter θ 
after considering about the prior and the data, as in 
equation.  

 
P(θ|y) = p(y|θ) × p(θ) (3.13) 
 

The Prior Distributions 
 

Section 3, the Bayesian inference has the prior distribution 
which represents the information about an uncertain parameter 
θ that is combined with the probability distribution of data to 
get the posterior distribution p(θ|y). For Bayesian paradigm, it 
is critical to indicate prior information with the value of the 
specified parameter or information which are obtained before 
analyzing the experimental data by using a probability 
distribution function which is called the prior probability 
distribution (or the prior). In this paper, we use three types of 

priors which are half-Cauchy prior, Gamma prior and Normal 
prior. The simplest of all priors is a conjugate prior which 
makes posterior calculations easy. Also, a conjugate prior 
distribution for an unknown parameter leads to a posterior 
distribution for which there is a simple formulae for posterior 
means and variances. (Akhtar and Khan, 2014a) use the half-
Cauchy distribution with scale parameter α = 25 as a prior 
distribution for scale parameter. 
 

Hereinafter we will discuss the types of prior distribution: 
 

• Half-Cauchy prior. 
• Gamma prior. 
• Normal prior. 

 

First, the probability density function of half-Cauchy 
distribution with scale parameter α is given by  
 

f(x) =
2α

π(x� + α�)
x > 0,α > 0. 

 

The mean and variance of the half-Cauchy distribution do not 
exist, but its mode is equal to 0. The half-Cauchy distribution 
with scale α = 25 is a recommended, default, weakly 
informative prior distribution for a scale parameter. At this 
scale α = 25, the density of half-Cauchy is nearly flat but not 
completely (see Figure 4), prior distributions that are not 
completely flat provide enough information for the numerical 
approximation algorithm to continue to explore the target 
density; the posterior distribution. The inverse-gamma is often 
used as a non-informative prior distribution for scale 
parameter, however; this model creates a problem for scale 
parameters near zero; (Gelman and Hill, 2007) recommend 
that, the uniform, or if more information is necessary, the half-
Cauchy is a better choice. Thus, in this paper, the half-Cauchy 
distribution with scale parameter α = 25 is used as a weakly 
informative prior distribution.  

 
 

Figure 4 
 

Second, the gamma distribution can be parameterized in terms 
of a shape parameter α and a rate parameter β. In this paper, we 
use one of the most commonly type of weak prior on variance 
which is the gamma with α = 0.01 and β = 0.01 is nearly flat, 
that we see it in the (Figure 4). Gelman (2006) has proposed 
that the inverse-gamma with parameters α = 0.001 and 
β = 0.001 are weakly prior. 
 

The pdf of the gamma distribution illustrated:  
 

f(x,α,β) =
β�x���e���

Γ(α)
x > 0,α > 0,β > 0. 

 

Third, in the normal (or Gaussian), each parameters is assigned 
a weak information Gaussian prior probability distribution. In 
this paper, we use the parameters β� independently in the 
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normal distribution with mean=0 and standard deviation=1000, 
that is, β�~N(0,1000), for this, we obtain a flat prior. From 

(Figure 4), we see that the large variance indicates a lot of 
uncertainty about each parameter and hence, a weak 
informative distribution.  
 

Stan Modeling 
 

Stan is a high level language written in a C++ library for 
Bayesian modeling and (Carpenter et al., 2017) is a new 
Bayesian software program for inference that primarily uses the 
No-U-Turn sampler (NUTS) (Hoffman and Gelman 2012) to 
obtain posterior simulations given a user-specified model and 
data. Hamiltonian Monte Carlo (HMC; Betancourt 2015) is one 
of the algorithms belonging to the general class of MCMC 
methods. In practice, HMC can be very complex, because in 
addition to the specific computation of possibly complex 
derivatives, it requires fine tuning of several parameters. 
Hamiltonian Monte Carlo takes a bit of effort to program and 
tune. In more complicated settings, though, HMC to be faster 
and more reliable than basic Markov chain simulation, Gibbs 
sampler and the Metropolis algorithm because they explores 
the posterior parameter space more efficiently. they do so by 
pairing each model parameter with a momentum variable, 
which determines HMC’s exploration behavior of the target 
distribution based on the posterior density of the current drawn 
parameter and hence enable HMC to ‘‘suppress the random 
walk behavior in the Metropolis algorithm’’ (Gelman, Carlin, 
Stern, & Rubin, 2014, p. 300). Consequently, Stan is 
considerably more efficient than the traditional Bayesian 
software programs. However, the main function in the rstan 
package is stan, which calls the Stan software program to 
estimate a specified statistical model, rstan provides a very 
clever system in which most of the adaptation is automatic. 
Statistical model through a conditional probability function 
p(θ|y,x) can be classified by Stan program, where θ is a 
sequence of modeled unknown values, y is a sequence of 
modeled known values, and x is a sequence of un-modeled 
predictors and constants (e.g., sizes, hyperparameters). A Stan 
program imperatively defines a log probability function over 
parameters conditioned on specified data and constants. Stan 
provides full Bayesian inference for continuous-variable 
models through Markov chain Monte Carlo methods 
(Metropolis et al., 1953), an adjusted form of Hamiltonian 
Monte Carlo sampling (Duane et al., 1987). Stan can be called 
from R using the rstan package, and through Python using the 
pystan package. All interfaces support sampling and 
optimization-based inference with diagnostics and posterior 
analysis. rstan and pystan also provide access to log 
probabilities, parameter transforms, and specialized plotting. 
Stan programs consist of variable type declarations and 
statements. Variable types include constrained and 
unconstrained integer, scalar, vector, and matrix types. 
Variables are declared in blocks corresponding to the variable 
use: data, transformed data, parameter, transformed parameter, 
or generated quantities. Stan Development Team (2017).  
 

Bayesian Analysis of Model 
 

To obtain the marginal posterior distribution of the particular 
parameters of interest Bayesian analysis is the method to solve 
this. In principle, the route to achieving this aim is clear; first, 
we require the joint posterior distribution of all unknown 
parameters, then, we integrate this distribution over the 

unknowns parameters that are not of immediate interest to 
obtain the desired marginal distribution. Or equivalently, using 
simulation, we draw samples from the joint posterior 
distribution, then, we look at the parameters of interest and 
ignore the values of the other unknown parameters.  
 

Exponential Distribution 
 

Now, the probability density function (pdf) is given by  

f(t,λ) =
1

λ
e�

�

�. 

Also, the survival function is given by  

S(t,λ) = 1 − F(y) = e�
�

�. 
We can state the likelihood function for right censored (as is 
our case the data are right censored)as  
L

= � 	
�

���
Pr(t�,δ�)																																																																						6.14 

= � 	
�

���
[f(t�)]

��[S(t�)]
���� 

 

where δ� is an indicator variable which takes value 0 if 
observation is censored and 1 if observation is uncensored. 
Thus, the likelihood function is given by  

L = ∏ 	�
��� [

�

�
e�

�

�]��[e�
�

�]����. 

Thus, the joint posterior density is given by  
p(β|t,X)
∝ L(t|X,β)
× p(β)																																																																																																		 

∝ � 	

�

���

[
1

e��
e
�

�

���]��[e
�

�

���]���� 

 

× ∏ 	
�
���

�

���×���
exp(−

�

�

��
�

���).(6.15) 
 

To carry out Bayesian inference in the exponential model, we 
should determine an prior distribution for β′s. We discussed the 
issue associated with specifying prior distributions in section 4, 
but for simplicity at this point, we assume that the prior 
distribution for β is Normal with [0, 5]. Elementary application 
of Bayes rule as displayed in (3.13), applied to (6.14), then 
gives the posterior density for b and β as equation (6.15). 
Result for this marginal posterior distribution get high-
dimensional integral over all model parameters β�. To solve 

this integral, we employ the approximated using Markov Chain 
Monte Carlo methods. However, due to the availability of 
computer software package like rstan, this required model can 
easily be fitted in Bayesian paradigm using Stan as well as 
MCMC techniques.  
 

Exponentiated Exponential Distribution 
 

Now, the probability density function (pdf) is given by  

f(t,α,λ) =
α

λ
(1 +

t

λ
)exp(1 − (1 +

t

λ
)�). 

Also, the survival function is given by  

S(t,α,λ) = 1 − (1 − e�
�

�)�. 
 

In the presence of censoring, the resulting log-likelihood 
function is modified to account for the possibility of partially 
observed data (in correspondence with censoring) We can write 
the likelihood function for right censored (as is our case the 
data are right censored) as  
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L = � 	
�

���
Pr(t�,δ�)																														 

= ∏ 	�
��� [f(t�)]

��[S(t�)]
����,  

where δ� is an indicator variable which takes value 0 if 
observation is censored and 1 if observation is uncensored. 
Thus, the likelihood function is given by  

L = ∏ 	�
��� [

�

�
e�

�

�(1 − e�
�

�)���]��[1 − (1 − e�
�

�)�]����.(6.16) 
 

Thus, the joint posterior density is given by  
 

p(α,β|t,X) ∝ L(t|X,α,β,b) × p(β) × p(α) × p(b)														 
 

∝ � 	

�

���

[
α

e��
e
�

�

��� (1 − e
�

�

��� )���]��[1 − (1 − e
�

�

��� )�]���� 

 

× ∏ 	
�
���

�

���×���
exp(−

�

�

��
�

���) ×
�×��

�(������)
.(6.17) (6.17) 

 

To carry out Bayesian inference in the exponentiated 
exponential model, we must specify a prior distribution for α, 
and β′s. We discussed the issue associated with specifying 
prior distributions in section 4, but for simplicity at this point, 
we assume that the prior distribution for α is half-Cauchy on 
the interval [0, 5] and for β is Normal with [0, 5]. Elementary 
application of Bayes rule as displayed in (3.13), applied to 
(6.16), then gives the posterior density for α, and β as equation 
(6.17). The result for this marginal posterior distribution get 
high-dimensional integral over all model parameters β�, and α. 

To resolve this integral we use the approximated using Markov 
chain Monte Carlo methods. However, due to the availability 
of computer software package like rstan, this required model 
can easily fit in Bayesian paradigm using Stan as well as 
MCMC techniques.  
 

Exponential Extension Distribution 
 

The probability density function (pdf) given by  

f(t,α,θ) =
α

λ
(1 +

t

λ
)exp(1 − (1 +

t

λ
)�); 

 

The survival function is given by  

S(t,α,θ) = exp(1 − (1 +
t

λ
)�); 

We can state the likelihood function for right censored (as is 
our case the data are right censored) as  

L = � 	
�

���
Pr(t�,δ�)																														 

= ∏ 	�
��� [f(t�)]

��[S(t�)]
����,  

 

where δ� is an indicator variable which takes value 0 if 
observation is censored and 1 if observation is uncensored. 
Thus, the likelihood function is given by  
 

L = ∏ 	�
��� [

�

�
(1 +

�

�
)exp(1 − (1 +

�

�
)�)]��[exp(1 − (1 +

�

�
)�)]����. (6.18) 

 

Thus, the joint posterior density is given by  
 

p(α,β|t,X) ∝ 			L(t|X,α,β) × p(β) × p(α 

∝ � 	

�

���

[
α

e��
(1 +

t

e��
)exp(1 − (1 +

t

e��
)�)]��[exp(1 − (1 +

t

e��
)�)]���� 

× ∏ 	
�
���

�

���×���
exp(−

�

�

��
�

���) ×
�×��

�(������)
.													(6.19) 

 

To carry out Bayesian inference in the exponential extension 
model, we must specify a prior distribution for α,and β′s. We 
discussed the issue associated with specifying prior 
distributions in section 4, but for simplicity at this point, we 
assume that the prior distribution for α is half-Cauchy on the 
interval [0, 5] and for β is Normal with [0, 5]. Elementary 
application of Bayes rule as displayed in (3.13), applied to 
(6.18), then gives the posterior density for α, and β as equation 
(6.19). The result for this marginal posterior distribution get 
high-dimensional integral over all model parameters β�, and α. 

To resolve this integral we use the approximated using Markov 
chain Monte Carlo methods. However, due to the availability 
of computer software package like rstan, this required model 
can easily fit in Bayesian paradigm using Stan as well as 
MCMC techniques.  
 

The Data: Lung Cancer Survival Data 
 

The data in Table 1 are taken from (Lawless, 1982), so that all 
the concepts and computations will be discussed around that 
data. Lung cancer survival data for patients assigned to one of 
two chemotherapy treatments. The data, are include 
observations on 40 patients: 21 were given one treatment 
(standard), and 19 the other (test). Several factors thought to be 
relevant to an individual’s prognosis were also recorded for 
each patient. These include performance status. In addition , 
tumors were classified into four types: squamous, small, adeno 
and large. Censored observations are starred.: 
 

x� A measure of the general medical condition on a scale of 0 
to 100 
x� Age of patient 
x� Number of months from diagnosis of cancer  
 

Table  1 Lung Cancer Survival Data 
 

t X1 X2 X3 t X1 X2 X3 
 Standard Squamous   Test Squamous  

411 70 64 5 999 90 54 12 
126 60 63 9 231* 50 52 8 
118 70 65 11 991 70 50 7 
92 40 69 10 1 20 65 21 
8 40 63 58 201 80 52 28 

25* 70 48 9 44 60 70 13 
11 70 48 11 15 50 40 13 

 Standard Small      
54 80 63 4  Test Small  
153 60 63 14 103* 70 36 22 
16 30 53 4 2 40 44 36 
56 80 43 12 20 30 54 9 
21 40 55 2 51 30 54 9 
287 60 66 25     
10 40 67 23  Test Adeno  

 Standard Adeno  18 40 69 5 
8 20 61 19 90 60 50 22 

12 50 63 4 84 80 62 4 
 Standard Large   Test Large  

177 50 66 16 164 70 68 15 
12 40 68 12 19 30 39 4 
200 80 41 12 43 60 49 11 
250 70 53 8 340 80 64 10 
100 60 37 13 231 70 67 18 

 

Days of survival t, performance status x1, age in year x2, and 
number months from diagnosis to entry into x3.   
 

Implementation Using Stan 
 

Bayesian modeling is used by rstan package includes the 
creation of blocks, data, transformed data, parameter, 
transformed parameter, or generated quantities. To use the 
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method for exponential model, exponentiated exponential, and 
exponential extension, we will follow the following steps; 
starting with build a function for the model containing the 
accompanying items: 

• Define the log survival. 
• Define the log hazard. 
• Define the sampling distributions for right censored 

data. 
 

At that point the distribution ought to be built on the function 
definition blocks. The function definition block contains user 
defined functions. The data block states the needed data for the 
model. The transformed data block permits the definition of 
constants and transforms of the data. The parameters block 
declares the model’s parameters. The transformed parameters 
block allows variables to be defined in terms of data and 
parameters that may be used later and will be saved. The model 
block is where the log probability function is defined.  
 

stan(file, model_name = "anon_model", model_code = "", fit = 
NA, data = list(), pars = NA, chains = 4, iter = 2000, warmup 
= floor(iter/2), thin = 1, init = "random",algorithm = 
c("NUTS", "HMC", "Fixed_param"),)  
 

Model Specification 
 

Now we will examine the posterior estimates of the parameters 
when the exponential, exponentiated exponential and 
exponential extension model’s are fitted to the above 
mentioned information (data). Thus the meaning of the 
probability (likelihood) becomes the topmost necessity for the 
Bayesian fitting. Here, we have likelihood as:  
 

L(θ|t) = � 	
�

���
f(t�)

��S(t�)
���� 

= � 	
�

���
(
f(t�)

S(t�)

��

S(t�)) 

= � 	
�

���
h(t�)

��S(t�),								 

 

this way, our log-likelihood progresses toward becoming  
 

logL= ∑ 	�
��� (log[h(t�)]

�� + log(S�)).  
 

Exponential Distribution 
 

The first model is exponential :  
t~exp(λ), 

 

where λ= exp(Xβ) is a linear combination of explanatory 
variables, log is the natural log for the time to failure event. 
The Bayesian system requires the determination and 
specification of prior distributions for the parameters. Here, we 
stick to subjectivity and thus introduce weakly informative 
priors for the parameters. Priors for the β are taken to be 
normal as follows:  
 

β�~N(0,5);				j= 1,2,3,...J 
 

To fit this model in Stan, we first write the Stan model code 
and save it in a separated text-file with name "model_code1". 
 

library(rstan) 
model_code1=" 
functions{ 
//defined survival 
vector log_s(vector t, vector scale){ 
vector[num_elements(t)] log_s; 

for(i in 1:num_elements(t)){ 
log_s[i]=log(1-(1-exp(-t[i] / scale[i]))); 
}  
return log_s; 
} 
//define log_ft 
vector log_ft(vector t, vector scale){ 
vector[num_elements(t)] log_ft; 
for(i in 1:num_elements(t)){ 
log_ft[i]=log((1 / scale[i]) * exp(-t[i] / scale[i]) ); 
} 
return log_ft; 
} 
//define log hazard 
vector log_h(vector t, vector scale){ 
vector[num_elements(t)] log_h; 
vector[num_elements(t)] logft; 
vector[num_elements(t)] logs; 
logft=log_ft(t,scale); 
logs=log_s(t,scale); 
log_h=logft-logs; 
return log_h; 
} 
//define the sampling distribution  
real surv_exp_lpdf(vector t, vector d, vector scale){ 
vector[num_elements(t)] log_lik; 
real prob; 
log_lik=d .* log_h(t,scale)+log_s(t,scale); 
prob=sum(log_lik); 
return prob; 
} 
} 
In this manner, we acquire the survival and hazard of the 
exponential model.  
 

Exponentiated Exponential Distribution 
 

The second model is exponentiated exponential model:  
 

t~expexp(α,λ), 
 

where λ= exp(Xβ). The Bayesian framework requires the 
specification of prior distributions for the parameters. Here, we 
stick to subjectivity and thus introduce weakly informative 
priors for the parameters. Priors for the β, and α are taken to be 
normal and half-Cauchy as follows:  
 

β�~N(0,5);				j= 1,2,3,...J 

α~HC(0,5). 
 

To fit this model in Stan, we first write the Stan model code 
and save it in a separated text-file with name "model_code2".: 
 

library(rstan) 
model_code1=" 
functions{ 
//defined survival 
vector log_s(vector t, real shape, vector scale){ 
vector[num_elements(t)] log_s; 
for(i in 1:num_elements(t)){ 
log_s[i]=log(1-(1-exp(-t[i] / scale[i]))^shape); 
}  
return log_s;} 
//define log_ft 
vector log_ft(vector t, real shape, vector scale){ 
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vector[num_elements(t)] log_ft; 
for(i in 1:num_elements(t)){ 
log_ft[i]=log((shape / scale[i]) * exp(-t[i] / scale[i]) *(1-exp(-
t[i] / scale[i])) ^ (shape-1));} 
return log_ft;} 
//define log hazard 
vector log_h(vector t, real shape, vector scale){ 
vector[num_elements(t)] log_h; 
vector[num_elements(t)] logft; 
vector[num_elements(t)] logs; 
logft=log_ft(t,shape,scale); 
logs=log_s(t,shape,scale); 
log_h=logft-logs; 
return log_h;} 
//define the sampling distribution  
real surv_expe_lpdf(vector t, vector d, real shape, vector 
scale){ 
vector[num_elements(t)] log_lik; 
real prob; 
log_lik=d .* log_h(t,shape,scale)+log_s(t,shape,scale); 
prob=sum(log_lik); 
return prob; 
}} 
 

Therefore, we obtain the survival and hazard of the 
exponentiated exponential model.  
 

Exponential Extension Distribution 
 

The third model is exponential extension model:  
t~expext(α,λ), 

 

where λ= exp(Xβ). The Bayesian framework requires the 
specification of prior distributions for the parameters. Here, we 
stick to subjectivity and thus introduce weakly informative 
priors for the parameters. Priors for the β, and α are taken to be 
normal and half-Cauchy as follows: 
 

β�~N(0,5);				j= 1,2,3,...J 

α~HC(0,5). 
 

To fit this model in Stan, we first write the Stan model code 
and save it in a separated text-file with name "model_code3".: 
library(rstan) 
model_code1=" 
functions{ 
//defined survival 
vector log_s(vector t, real shape, vector scale){ 
vector[num_elements(t)] log_s; 
for(i in 1:num_elements(t)){ 
log_s[i]=1-(1+t[i] / scale[i])^shape;}  
return log_s;} 
//define log_ft 
vector log_ft(vector t, real shape, vector scale){ 
vector[num_elements(t)] log_ft; 
for(i in 1:num_elements(t)){ 
log_ft[i]=log(shape / scale[i]) +(shape-1)*log(1+t[i] / 
scale[i]) +(1-(1+t[i] / scale[i])^        (shape));} 
return log_ft;} 
//define log hazard 
vector log_h(vector t, real shape, vector scale){ 
vector[num_elements(t)] log_h; 
vector[num_elements(t)] logft; 
vector[num_elements(t)] logs; 

logft=log_ft(t,shape,scale); 
logs=log_s(t,shape,scale); 
log_h=logft-logs; 
return log_h;} 
//define the sampling distribution  
real surv_expe_lpdf(vector t, vector d, real shape, vector 
scale){ 
vector[num_elements(t)] log_lik; 
real prob; 
log_lik=d .* log_h(t,shape,scale)+log_s(t,shape,scale); 
prob=sum(log_lik); 
return prob; 
}} 
Therefore, we obtain the survival and hazard of the exponential 
extension model.  
 

Build the Stan 
 

Stan contains an arrangement of blocks as stated previously; in 
the first block we will define the data block, in which we 
include the number of the observations, observed times, 
censoring indicator (1=observed, 0=censored), number of 
covariates, and build the matrix of covariates (with N rows and 
M columns). Then we create the parameter in block 
parameters, since we have more one parameter, we will do 
some changes for the parameters in side transformed 
parameters block. Finally, we arrange the model in blocks 
model. In these blocks, we put the prior for the parameters and 
the likelihood to get the posterior distribution for these model. 
We save this work in a file to use it in rstan package.  
 

Exponential Distribution 
 

data { 
int N;                            // number of observations 
vector<lower=0>[N] y;             // observed times 
vector<lower=0,upper=1>[N] censor;//censoring indicator 
(1=observed, 0=censored) 
int M;                            // number of covariates 
matrix[N, M] x;            // matrix of covariates (with n rows and 
H columns) 
} 
parameters { 
vector[M] beta; // Coefficients in the linear predictor 
(including intercept) 
} 
transformed parameters { 
vector[N] linpred; 
vector[N] scale; 
linpred = x*beta; 
for (i in 1:N) { 
scale[i] = exp(linpred[i]); 
} 
} 
model { 
beta ~ normal(0,5); 
y ~ surv_exp(censor, scale); 
} 
generated quantities{ 
real dev;  
dev=0; 
dev=dev + (-2)*surv_exp_lpdf(y|censor,scale); 
} 
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" 
Exponentiated Exponential Distribution 
 

 //data block 
data { 
int N;                            // number of observations 
vector<lower=0>[N] y;             // observed times 
vector<lower=0,upper=1>[N] censor;//censoring indicator 
(1=observed, 0=censored) 
int M;                            // number of covariates 
matrix[N, M] x;            // matrix of covariates (with n rows and 
H columns) 
} 
parameters { 
vector[M] beta; // Coefficients in the linear predictor (including 
intercept) 
real<lower=0> shape;    // shape parameter 
} 
transformed parameters { 
vector[N] linpred; 
vector[N] scale; 
linpred = x*beta; 
for (i in 1:N) { 
scale[i] = exp(linpred[i]); 
} 
} 
model { 
shape ~ cauchy(0,5); 
beta ~ normal(0,5); 
y ~ surv_expe(censor, shape, scale); 
} 
generated quantities{ 
real dev;  
dev=0; 
dev=dev + (-2)*surv_expe_lpdf(y|censor,shape,scale); 
} 
" 
Exponential Extension Distribution 
 

//data block 
data { 
int N;                            // number of observations 
vector<lower=0>[N] y;             // observed times 
vector<lower=0,upper=1>[N] censor;//censoring indicator 
(1=observed, 0=censored) 
int M;                            // number of covariates 
matrix[N, M] x;            // matrix of covariates (with n rows and 
H columns) 
} 
parameters { 
vector[M] beta; // Coefficients in the linear predictor 
(including intercept) 
real<lower=0> shape;    // shape parameter 
} 
transformed parameters { 
vector[N] linpred; 
vector[N] scale; 
linpred = x*beta; 
for (i in 1:N) { 
scale[i] = exp(linpred[i]); 
} 
} 
model { 
shape ~ gamma(0.01,0.01); 

beta ~ normal(0,5); 
y ~ surv_expe(censor, shape, scale); 
} 
generated quantities{ 
real dev;  
dev=0; 
dev=dev + (-2)*surv_expe_lpdf(y|censor,shape,scale); 
} 
" 
Creation of Data for Stan 
 

In this subsection, we going to creation data that we want to 
use it for analysis, data creation requires model matrix X, 
number of predictors M, information regarding censoring and 
response variable. The number of observations is specified by 
N, that is, 40. Censoring is taken into account, where 0 stands 
for censored and 1 for uncensored values. Finally, all these 
things are combined in a listed form as dat.  
 

y<-c(411, 126, 118, 92, 8, 25, 11, 54, 153, 16, 56, 21, 287, 10, 
8, 12, 177, 12, 200, 250, 100, 999, 231, 991, 1, 201, 44,15, 103, 
2, 20, 51, 18, 90, 84, 164, 19, 43, 340, 231) 
censor<- c(rep(1, 5), 0, rep(1, 16), 0, rep(1, 5), 0, rep(1,11))  
x1<-c(70, 60, 70, 40, 40, 70, 70, 80, 60, 30, 80, 40, 60, 40, 20, 
50, 50, 40, 80, 70, 60, 90, 50, 70, 20, 80, 60, 50, 70, 40, 30, 30, 
40, 60, 80, 70, 30, 60, 80, 70)  
x2<-c(64, 63, 65, 69, 63, 48, 48, 63, 63, 53, 43, 55, 66, 67, 61, 
63, 66, 68, 41, 53, 37, 54, 52, 50, 65, 52, 70, 40, 36, 44, 54, 59, 
69, 50, 62, 68, 39, 49, 64, 67)  
x3<-c(5, 9, 11, 10, 58, 9, 11, 4, 14, 4, 12, 2, 25, 23, 19, 4, 16, 
12, 12, 8, 13, 12, 8, 7, 21, 28, 13, 13, 22, 36, 9, 87, 5, 22, 4, 15, 
4, 11, 10, 18)  
x4<-c(rep(1,7),rep(0,14),rep(1,7),rep(0,12)) 
x5<-c(rep(0,7),rep(1,7),rep(0,14),rep(1,4),rep(0,8)) x6<-
c(rep(0,14),rep(1,2),rep(0,16),rep(1,3),rep(0,5))  
x7<-c(rep(1,21),rep(0,19))  
x1<-x1-mean(x1)  
x2<-x2-mean(x2)  
x3<-x3-mean(x3) 
x <- cbind(1,x1,x2,x3,x4,x5,x6,x7)  
N = nrow(x) 
M = ncol(x) 
event=censor 
 

A model matrix X = (x�,x�,...,x�) with each individual, 
where (Lawless, 1982)  
 x� = 1 
 x� = Performance	status 
 x� = Age 
 x� =
Months	from	diagnosis	to	entry	into	the	study 
 x� = 1	if	tumor	type	is	squamous,
0	otherwise 
 x� = 1if	tumor	type	is	small,0	otherwise 
 x�= 1if	tumor	type	is	adeno,0	otherwise 
 x� =
0	if	treatment	is	test,1	if	it	is	standard 
 

It is wise to center the regressor variables: we have centered 
just x�,x� and x� here and work with the model for which  
 

logθ = β� + β�(x� − x��) + β�(x� − x��) + β�(x� − x��) + �	

�

���

β�X�. 

Runing the Model Using Stan for Exponential Distribution 
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Now we run Stan with 2 chains for 5000 iterations and display 
the results numerically and graphically. The defaults are 5000 
for iter and warmup is set to iter/2, which gives you 2500 
warmup samples and 2500 real samples to use for inference. 
We use the defaults to make sure that the chain is get started 
good.  
 dat <- list( y=y, x=x, event=event, N=N, M=M) 
#regression coefficient with log(y) as a guess to initialize 
beta1=solve(crossprod(x),crossprod(x,log(y))) 
#convert matrix to a vector 
beta1=c(beta1) 
M1<-
stan(model_code=model_code1,init=list(list(beta=beta1),list(b
eta=2*beta1)),data=dat,iter=5000,chains=2) 
print(M1,c("beta","dev"),digits=2) 
 

Summarizing Output 
 

A summary of the parameter model can be obtained by using 
print(M1), which provides posterior estimates for each of the 
parameters in the model. Before any inferences can be made, 
however, it is critically important to determine whether the 
sampling process has converged to the posterior distribution. 
Convergence can be diagnosed in several different ways. One 
way is to look at convergence statistics such as the potential 
scale reduction factor, Rhat, and the effective number of 
samples, n_eff (Gelman et al., 2013), both of which are outputs 
in the summary statistics with print(M1). The function rstan 
approximates the posterior density of the fitted model and 
posterior summaries can be seen in the following tables. Table 
2, which contain summaries for for all chains merged and 
individual chains, respectively. Included in the summaries are 
(quantiles),(means), standard deviations (sd), effective sample 
sizes (n_eff), and split (Rhats) (the potential scale reduction 
derived from all chains after splitting each chain in half and 
treating the halves as chains). For the summary of all chains 
merged, Monte Carlo standard errors (se_mean) are also 
reported.  
 

Table  2Summary of the simulated results using rstan function 
with Mean stands for posterior mean, se_mean, sd for posterior 

standard deviation, LB, Median, UB are 2.5%, 50%, 97.5% 
quantiles, n_eff for number effective sample size, and Rhat, 

respectively 
 

mean se_meansd  2.5%   25%   50%   75% 97.5% n_effRhat 
beta[1]  4.81    0.01 0.41  4.06  4.53  4.79  5.07  5.68  2586    1 
beta[2]  0.05    0.00 0.01  0.03  0.05  0.05  0.06  0.07  4292    1 
beta[3]  0.01    0.00 0.02 -0.03 -0.01  0.01  0.02  0.05  4645    1 
beta[4]  0.01    0.00 0.01 -0.02  0.00  0.00  0.01  0.03  4664    1 
beta[5]  0.35    0.01 0.45 -0.55  0.05  0.34  0.66  1.22  3325    1 
beta[6] -0.12    0.01 0.49 -1.08 -0.45 -0.14  0.20  0.85  3380    1 
beta[7] -0.82    0.01 0.60 -1.92 -1.23 -0.85 -0.42  0.42  3018    1 
beta[8] -0.27    0.01 0.40 -1.05 -0.53 -0.26  0.00  0.50  3726    1 

 

 

 
 

Figure  5Caterpillar plot for Exponential model 

The inference of the posterior density after fitting the 
(Exponential model) for lung cancer survival data using stan 
are reposted in Table 2. The posterior estimate for β� is 
4.81 ± 0.41 and 95% credible interval is (4.06,5.68), which is 
statistically significant. Rhat is close to 1.0, indication of good 
mixing of the three chains and thus approximate convergence. 
posterior estimate for β� is 0.05± 0.01 and 95% credible 
interval is (0.03,0.07), which is statistically significant. 
posterior estimate for β� is 0.01± 0.02 and 95% credible 
interval is (-0.03,0.05), which is statistically not significant. 
posterior estimate for β� is 0.01± 0.01 and 95% credible 
interval is (-0.02,0.03), which is statistically not significant. 
posterior estimate for β� is 0.35± 0.45 and 95% credible 
interval is (-0.55,1.22), which is statistically not significant. 
posterior estimate for β� is − 0.12± 0.49 and 95% credible 
interval is (-1.08,0.85), which is statistically not significant. 
posterior estimate for β� is − 0.82 ± 0.60 and 95% credible 
interval is (-1.92,0.42), which is statistically not significant. 
posterior estimate for β� is − 0.27 ± 0.40 and 95% credible 
interval is (-1.05,0.50), which is statistically significant. Rhat is 
close to 1.0, indication of good mixing of the three chains and 
thus approximate convergence. The table displays the output 
from Stan. Here, the coefficient beta[0] is the intercept, while 
the coefficient beta[1,.,7] is the effect of the only covariate 
included in the model. The effective sample size given an 
indication of the underlying autocorrelation in the MCMC 
samples values close to the total number of iterations. The 
selection of appropriate regressor variables can also be done by 
using a caterpillar plot. Caterpillar plots are popular plots in 
Bayesian inference for summarizing the quantiles of posterior 
samples. we can see in this (Figure 5) that the caterpillar plot is 
a horizontal plot of 3 quantiles of selected distribution. This 
may be used to produce a caterpillar plot of posterior samples. 
In MCMC estimation, it is important to thoroughly assess 
convergence as it in (Figure 6) the rstan contains specialized 
function to visualise the model output and assess convergence.  
stan_ac(M1,"beta") 
traceplot(M1,"beta") 
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Figure  6 Checking model convergence using rstan, through inspection of the 
traceplots or the autocorrelation plot 

 

We look in (Figure 6) for two things in these trace plots; 
stationarity and good mixing. Stationarity refers to the path 
staying within the posterior distribution. We find that all the 
mean value of the chain is quite stable from beginning to end. 
A well-mixing chain means that each successive sample within 
each parameter is not highly correlated with the sample before 
it.  
Runing the Model Using Stan for Exponentiated Exponential 
Model 
 

Now we run Stan with 2 chains for 5000 iterations and display 
the results numerically and graphically:  
dat <- list( y=y, x=x, event=event, N=N, M=M) 
#regression coefficient with log(y) as a guess to initialize 
beta1=solve(crossprod(x),crossprod(x,log(y))) 
#convert matrix to a vector 
beta1=c(beta1) 
M2<-
stan(model_code=model_code1,init=list(list(beta=beta1),list(b
eta=2*beta1)),data=dat,iter=5000,chains=2) 
print(M2,c("beta","shape","dev"),digits=2) 
 

Summarizing Output 
 

The function rstan approximates the posterior density of the 
fitted model and posterior summaries can be seen in the 
following tables. Table 3, contains summaries for for all chains 
merged and individual chains, respectively. Included in the 
summaries are (quantiles),(means), standard deviations (sd), 
effective sample sizes (n_eff), and split (Rhats) (the potential 
scale reduction is derived from all chains after splitting each 
chain in half and treating the halves as chains). For the 
summary of all chains merged, Monte Carlo standard errors 
(se_mean) are also reported.  
 

Table  3Summary of the simulated results using rstan function 
with Mean stands for posterior mean, se_mean, sd for posterior 

standard deviation, LB, Median, UB are 2.5%, 50%, 97.5% 
quantiles, n_eff for number effective sample size, and Rhat, 

respectively 
 

mean se_meansd  2.5%   25%   50%   75% 97.5% n_effRhat 
beta[1]  4.77    0.01 0.44  4.00  4.47  4.74  5.04  5.73  2373    1 
beta[2]  0.05    0.00 0.01  0.03  0.05  0.05  0.06  0.07  4623    1 
beta[3]  0.01    0.00 0.02 -0.03 -0.01  0.01  0.02  0.05  5000    1 
beta[4]  0.01    0.00 0.01 -0.02  0.00  0.00  0.01  0.03  3923    1 
beta[5]  0.36    0.01 0.45 -0.52  0.06  0.36  0.65  1.26  3243    1 
beta[6] -0.11    0.01 0.49 -1.07 -0.43 -0.11  0.20  0.93  3441    1 
beta[7] -0.79    0.01 0.60 -1.93 -1.19 -0.81 -0.40  0.43  3115    1 
beta[8] -0.26    0.01 0.39 -1.03 -0.52 -0.26  0.00  0.49  3650    1 
shape    1.08    0.00 0.26  0.66  0.90  1.06  1.25  1.65  3870    1 

 

 
 

Figure  7Caterpillar plot for Exponential model 

The inference of the posterior density after fitting the 
(Exponentiated Exponential model) for lung cancer survival 
data using stan are reposted in Table 3. The posterior estimate 
for β� is 4.77 ± 0.44 and 95% credible interval is (4.00,5.73), 
which is statistically significant. Rhat is close to 1.0, indication 
of good mixing of the three chains and thus approximate 
convergence. posterior estimate for β� is 0.05± 0.01 and 95% 
credible interval is (0.03,0.07), which is statistically significant. 
posterior estimate for β� is 0.01± 0.02 and 95% credible 
interval is (-0.03,0.05), which is statistically not significant. 
posterior estimate for β� is 0.01± 0.01 and 95% credible 
interval is (-0.02,0.03), which is statistically not significant. 
posterior estimate for β� is 0.36± 0.45 and 95% credible 
interval is (-0.52,1.26), which is statistically not significant. 
posterior estimate for β� is − 0.11± 0.49 and 95% credible 
interval is (-1.07,0.93), which is statistically not significant. 
posterior estimate for β� is − 0.79 ± 0.60 and 95% credible 
interval is (-1.93,0.43), which is statistically not significant. 
posterior estimate for β� is − 0.26± 0.39 and 95% credible 
interval is (-1.03,0.49), which is statistically not significant. 
Rhat is close to 1.0, indication of good mixing of the three 
chains and thus approximate convergence. The table displays 
the output from Stan. Here, the coefficient beta[0] is the 
intercept, while the coefficient beta[1,.,7] is the effect of the 
only covariate included in the model. The effective sample size 
given an indication of the underlying autocorrelation in the 
MCMC samples values close to the total number of iterations. 
The selection of appropriate regressor variables can also be 
done by using a caterpillar plot. Caterpillar plots are popular 
plots in Bayesian inference for summarizing the quantiles of 
posterior samples. we can see in this (Figure 7) that the 
caterpillar plot is a horizontal plot of 3 quantiles of selected 
distribution. This may be used to produce a caterpillar plot of 
posterior samples. In MCMC estimation, it is important to 
thoroughly assess convergence as it in (Figure 8) the rstan 
contains specialized function to visualise the model output and 
assess convergence.  
 

stan_ac(M2,"beta")  
traceplot(M2,"beta")  
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Figure  8 Checking model convergence using rstan, through inspection of the 

traceplots or the autocorrelation plot 
 

 

Runing the Model Using Stan for Exponential Extension 
Model 
 

Now we run Stan with 2 chains for 5000 iterations and display 
the results numerically and graphically:  
dat <- list( y=y, x=x, event=event, N=N, M=M) 
#regression coefficient with log(y) as a guess to initialize 
beta1=solve(crossprod(x),crossprod(x,log(y))) 
#convert matrix to a vector 
beta1=c(beta1) 
M3<-
stan(model_code=model_code1,control=list(adapt_delta=0.89
),init=list(list(beta=beta1),list(beta=2*beta1)),data=dat,iter=5
000,chains=2) 
print(M3,c("beta","shape","dev"),digits=2) 
 

Summarizing Output 
 

The function rstan approximates the posterior density of the 
fitted model, and posterior summaries can be seen in the 
following tables. Table 4, contains summaries for for all chains 
merged and individual chains, respectively. Included in the 
summaries are (quantiles),(means), standard deviations (sd), 
effective sample sizes (n_eff), and split (Rhats) (the potential 
scale reduction derived from all chains after splitting each 
chain in half and treating the halves as chains). For the 
summary of all chains merged, Monte Carlo standard errors 
(se_mean) are also reported.  
 

Table  4Summary of the simulated results using rstan function with 
Mean stands for posterior mean, se_mean, sd for posterior standard 

deviation, LB, Median, UB are 2.5%, 50%, 97.5% quantiles, n_eff for 
number effective sample size, and Rhat, respectively 

 

mean se_meansd  2.5%   25%   50%   75% 97.5% n_effRhat 
beta[1]  5.06    0.04 1.19  3.13  4.28  4.93  5.64  8.05   980    1 
beta[2]  0.05    0.00 0.01  0.03  0.05  0.05  0.06  0.08  3848    1 
beta[3]  0.01    0.00 0.02 -0.03 -0.01  0.01  0.02  0.05  3515    1 
beta[4]  0.01    0.00 0.01 -0.02  0.00  0.01  0.01  0.03  3483    1 
beta[5]  0.37    0.01 0.48 -0.67  0.07  0.40  0.70  1.26  2705    1 
beta[6] -0.11    0.01 0.51 -1.14 -0.43 -0.13  0.21  0.95  2952    1 
beta[7] -0.81    0.01 0.61 -1.98 -1.21 -0.83 -0.43  0.46  2746    1 
beta[8] -0.24    0.01 0.41 -1.06 -0.51 -0.24  0.03  0.59  3459    1 
shape    2.71    0.29 9.12  0.43  0.72  1.05  1.77 15.64  1016    1 

 
 

 
 

Figure  9 Caterpillar plot for Exponential model 
 

The inference of the posterior density after fitting the 
(Exponential Extension model) for lung cancer survival data 
using stan are reposted in Table 3. The posterior estimate for β� 
is 5.06± 1.19 and 95% credible interval is (3.13,8.05), which 
is statistically significant. Rhat is close to 1.0, indication of 
good mixing of the three chains and thus approximate 
convergence. posterior estimate for β� is 0.05± 0.01 and 95% 
credible interval is (0.03,0.08), which is statistically significant. 
posterior estimate for β� is 0.01± 0.02 and 95% credible 
interval is (-0.03,0.05), which is statistically not significant. 
posterior estimate for β� is 0.01± 0.01 and 95% credible 
interval is (-0.02,0.03), which is statistically not significant. 
posterior estimate for β� is 0.37± 0.01 and 95% credible 
interval is (-0.67,1.26), which is statistically not significant. 
posterior estimate for β� is − 0.11± 0.51 and 95% credible 
interval is (-1.14,0.95), which is statistically not significant. 
posterior estimate for β� is − 0.81 ± 0.61 and 95% credible 
interval is (-1.98,0.46), which is statistically not significant. 
posterior estimate for β� is − 0.24± 0.41 and 95% credible 
interval is (-1.06,0.59), which is statistically not significant. 
Rhat is close to 1.0, indication of good mixing of the three 
chains and thus approximate convergence. The table displays 
the output from Stan. Here, the coefficient beta[0] is the 
intercept, while the coefficient beta[1,.,7] is the effect of the 
only covariate included in the model. The effective sample size 
given an indication of the underlying autocorrelation in the 
MCMC samples values close to the total number of iterations. 
The selection of appropriate regressor variables can also be 
done by using a caterpillar plot. Caterpillar plots are popular 
plots in Bayesian inference for summarizing the quantiles of 
posterior samples. we can see in this (Figure 9) that the 
caterpillar plot is a horizontal plot of 3 quantiles of selected 
distribution. This may be used to produce a caterpillar plot of 
posterior samples. In MCMC estimation, it is important to 
thoroughly assess convergence as it in (Figure 10) the rstan 
contains specialized function to visualise the model output and 
assess convergence. 
 

 stan_ac(M3,"beta")  
traceplot(M3,"beta")  
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Figure  10 Checking model convergence using rstan, through inspection of the 
traceplots or the autocorrelation plot 

 

CONCLUSION 
 

To display choice in this segment, we need to looking into the 
model which best suits the purpose. Here, therefore, Table 5 
clearly demonstrates that exponential extension is the most 
proper model for the Stan as it has least estimation of deviance 
when contrasted with exponential and exponentiated 
exponential. Finally, we can conclude that deviance is great 
criteria of model examination.  
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Table 5 Model comparison of exponential, 
exponentiated exponential and exponential extension 
models for the lung cancer survival data. It is evident 

from this table that exponential extension is much better 
than exponential and exponentiated exponential. 

 

Models Stan Deviance 
exponential 316.91 

exponentiated 
exponential 

317.08 

exponential extension 315.25 

 

******* 


