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Integral transforms facilitate the conversion of complicated algebraic equations into simple and
easily solvable expressions. In contrast to Fourier and Laplace transformations that were introduced
to solve physical problems, Mellin transformation arose in a Mathematical, Physical and
Engineering context. In the proposed work Extended Finite Mellin Transform is introduced.
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INTRODUCTION

In mathematics, the Mellin transform is an integral transform
that may be regarded as the multiplicative version of the two-
sided Laplace transform. This integral transform is closely
connected to the theory of Dirichlet series, and is often used in
number theory, mathematical statistics, and the theory of
asymptotic expansions; it is closely related to the Laplace
transform, Fourier transform, and the theory of the gamma
function and allied special functions.

The Mellin transform is widely used in computer science for
the analysis of algorithms because of its scale invariance
property. The Mellin transform method is applied to fractional
differential equations (Klimek and Dziembowski, 2008) [1].
It is also used in statistics for finding means, variances,
skewness, and fuzzy numbers and then apply to the random
coefficient autoregressive (RCA) time series models (Appadoo,
Thavaneswaran and Mandal, 2014) [2]. It is also useful for
Geophysics. Integral transform facilitate the conversion of
complicated algebraic equations into simple and easily solvable
expressions. Their application is now gaining a lot of
importance in geophysics, particularly in the area of signal
processing and the quantitative interpretation of potential field
data. Despite the popularity of integral transform in
geophysical data analysis, the Mellin transform has remained
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virtually unexploited for geophysical applications (Mohan,
Reddy and Ofoegbu, 1989) [3].

The main purpose of this paper is to generalized Finite Mellin
transform in the distributional sense, Describing testing
function spaces for Finite Mellin transform, Described some
operators and properties for Finite Mellin transform. This paper
is ordered as follows: Definitions are given in section 2, In
section 3, Testing function spaces for Finite Mellin transform
are given. The kernel of Finite Mellin transform is a member of
testing function space is proved in section 4. In section 5,
Definition of Distributional Generalized Finite Mellin
transform is given. Some operators on testing function space
are given in section 6. In section 7, Adjoint operators of Finite
Mellin transform are given. Some properties of Generalized
Finite Mellin transform are given in section 8. Lastly we
conclude the paper.

The notations and terminology as per A. H. Zemanian [4], [5].
Definition: Finite Mellin Transform

The one Dimensional Finite Mellin transform with parameter
s off(t) denoted by M , {f(t)} = F(S) performs a linear

operation, given by the integral transform,
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@.1)

a2s+1
where the kernel K(S) = ( e —ts]
t

Testing Function Spaces for Finite Mellin Transform
The Space Mf,b,c,a :

Let / be the open set in R, X R, and E_ denotes the class of

infinitely differentiable function defined on [, the space
Mf,b,c,a is given by,

Myeo= {q) pEE 1y, [¢(t)] = Slllp‘/lm (l)t"*'D,%(t)‘ < CAqqqa}

For each g = 0,1,2,3,.ccveennen. and where the constants
A and C depend on the testing function ¢ .

This space is a subspace of (3.1) which is given by,

Myeam :{¢:¢ €E 17y, [¢(t)] = Sl[lp‘ﬂ,b‘l (t)t‘”'D,‘i¢(t)‘ <c, (m+5)11 qqa}
for any O >0, where mis the constant depending on the
function ¢ .

The space MJL‘)',h,c,a :

It is a negative space of (3.1) which is given by,

M, 0= {qﬁ peE /2, [¢(t)] = S?p Aye (ﬂ‘)(ﬁ)qﬂ th¢(t)‘ < CAqqqa}

Here we also set

0<r<1
ﬂb,c (t):{

t"“1<t<a
Lemma
2s5+1
The function o —t° | is a member of Mf,b,c,a if

—b <Res < b for any real number c .
2s5+1

Proof: Let ¢(t) = —t

ts+1

Consider, 7, . , |:¢(t)] = Sup‘/ib’c (f)fq+1th¢(t)‘
Iy

a2s+l
=sup|, . (t) "' DY (—tm — tsj

1y

=sup
1

1

where P is a polynomial in s and ¢ .

= sup‘asz(—s—q)tb“ —-P(s—q +1)tb”+1 <C 4.0
I

Ay (1)1 [P(—s —q)taP ! - P(s—q+1)1 ‘

where

C= Sup{azs”P(—s—q)tb_s _P(S_q+1)tb+s+l}

1
qa
LIGIE CZW by (4.1)

=CA%9", where A= L

(24

q
a2s+1
S
Hence o —t EMf,b,c,a'

Here onwards for simplicity we say that ¢(t) eM fhea if

‘ﬂb’c(l)tqHDIq¢(Z)‘<oO, for ¢=0,1,2,3,..... . If as
t—>0, b—s>0andb+s5s>0.
ie. b >Res s>-b. ie Res<b —-b<Res

i.e. if —b <Res < b and for any real number c .
Thus @(t) € M, ., if=b<Res<b, for any real number

c.
Distributional Generalized Finite Mellin Transform (M fT )

Forf(t) € F;ijcja , where F;,b,c,a
M f b nd —b < Res < b. The distributional Finite Mellin

is the dual space of

transform is defined as,

M {f(0)f=F(s)=(f(1).¢(1.5)).

2s5+1
where ¢(I,S)={ — —tsj and for each fixed?
-

.1

(O<t<a). The right hand side of (5.1) is meaningful

because according to lemma 4, ¢(t,s)erbca and
f(1)e Miyeo
Operators on the Space M f b

Proposition: 1f ¢(t)er beo and ois any fixed real

number then¢(t+0')er’b’c’a, t+0>0 and

¢(t+0')eMj'i’b’c,a, t+0<0.

Proof

Vpeq®(t+0)=sup ‘/Ib,c (1)t"'Dig(t+ U)‘
1y

Consider,

=sup|2,.. (¢ =0) (1 ~o)"" Dig(r)
1

st=t'-o
<CA%q™
Thus, ¢(t+0')er’b’c,a for t+0>0.

Where t'=t+0
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Similarly it can shown that ¢(t + 0) € M; beq> fOT
t+0<0.
Proposition: The translation (Shifting)

o ¢(t) - ¢(t + O') is a topological automorphism on

operator

Mf’b’c,a , for t+0 >0, and it is a topological isomorphism

from Mf,b,c,a onto M})-jb&,’a Jfor t+0<0.

Proposition: If ¢(t) eM;,, , and r> 0, strictly positive
number, then ¢(rt) EM;y u

Proof: Consider, 7, . ¢(rt)=sup ‘ﬁb’c (1)1 Dig( rt)‘
I

q+1
=sup|4,, (Zj(zj Dig(T)|,
I T\r)\r
T
Where, 71t=T1 .. t=—
r

- Msuli,, (T)(T)"" Dig(T),

Where, M is a constant depending on 7 .
<SMCAq"* <C'A%q"
where C' = MC .

Thus, ¢(rt) IS Mf,h,c,a’ for r>0.

Proposition: 1f r > 0and ¢(t) €M, ., then the scaling
operator R:M,, ., —>M;, , defined by Rp=vy

where (t) =¢ (rt ) is a topological automorphism.

Proposition: The operator ¢(t) - Dt¢(t) is defined on the

space M Fbea and transforms this space into itself.

Proof: Let p(t)e M, ., 1t Dg(t) = (t), we have
VeV (7) sup‘/Ib ()t Diy (t )‘
- s]{Jp‘/Ib,c (1 tq“DﬂD[gzﬁ(t)‘
— sgllp ‘/1,,,6 (t)tq”Dﬂ”gzﬁ(t)‘
cca (g+1)""",
G=012,3,...

Therefore, t//(t) eEM;, ., ie Dt¢(t) EM; ) o -

Le. J/b,c,q (Df¢(l)) = }/b,c,(q+1) (¢(l)) :

Proposition: The differential operator of M ,-type

Mf Z¢(t) —)Dt¢(t) is a topological autopmorphism on
Mf,b,c,a :

Proposition: For m= (m1 , 1, ) , where
my,m, =0,1,2,.......... , i g(r)e M;y.n Then
W(t)EMf,b,c,a where l//(l‘)=Dm¢(t). Further the
mapping =D"¢:¢p—>wis one-one, linear and
continuous.

Proof: Fory eM .
1) Dy (1)

1)t DI D" (1)

Voeq¥ (t) = 81[1p V’b,c (
= Sl;lp V’b,c (

=sup|4, . (£)t""' DI g (1) < C4!q*"
4

(6.7.1)
Thus y (t)eM ;.. if $()eM )., .

It is obviously linear. It is injective for, if Dm¢:0then
¢=c, cis a constant. If ¢=0then #=0and D is
injective. But if ¢ # 0 then,
)tq”Dt"c‘ = sup V«b,c (¢

Sljlp‘/ib,c (t )tq”c‘, for ¢=0.

As the right hand side is not bounded we conclude that
peM fb.co» Which is a contradiction. Hence “c¢* must be

zero and therefore ¢=0. For continuity we observe from
equation (6.7.1) that,

Vbeq (Dm¢) <My, (¢),

Where M is some constant. Thus the theorem is proved.
reRandp(t)eM,, ..,
E(p)=y(t)=e"d(t)eM ;) 4

Proof: Letg(t)eM ;.
)=sup . (

Proposition: For

Consider, y,, . (1 t)tq”D[qe_”gé(t)‘

1

=sup|Y be ”/1}) (¢)t q+1th¢(t)
5 ]i=0
1
=sup|>_be " DI (1)
Iy |i=0

<CA‘I qa

Thus (//(t) fhea 1f¢( )er’b_m,a.
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Adjoint Operators of Fourier-Finite Mellin Transform

Proposition: The adjoint shifting operator is a continuous
function from Mf,b,c,a to Mf,b,c,a' The adjoint operator

f (t ) - f (t - O‘) leads to the operation transform formula

M {f(1=0)j=RM {1 (1)}

Proof:

M, {f(r—a)}=<f(f‘“)’(%_tsj>

:<f(t),[m(t+a) J>

25+1
:<f(T—O'),(C;SH —Tsj> where t+o0=T

t=T-o
2s+1
a

:R<f(t)’( 5 _tsj>’
where, R is constant depending on o .

= RM {1 (1)]
M {f(t-0)}=RM {f(1)}.
Proposition: The adjoint scaling operator is a continuous
function from M;h ca O M;b .- The adjoint operator

Consider,

1 t
f (l ) ->—f (—j corresponding transform formula is
q q

1

M, {—f(i }=QMf {70}

q q
Proof:

-G
=<f(f)a (f;%(qt)sb
I e werrf

2s+1
a

:Q<f(f),[ 3 —tsj> where, () is a constant
r

depending on ¢ .

Consider,

=OM ({f(1)}.
1

t

o {14 0, 0y
q9 \4

Properties of Generalized Finite Mellin Transform

Linearity Property: 1t M ’ { f (t)} is generalized finite mellin

transform of f (t ) and M, { g(t )} is generalized finite

mellin transform of g (t ) then

MG +Cog0)(5) =G, {1 (0} (5)+ M, (g0}

Proof: Consider,

M AT (1) +Cog (1) (s) I[Cf ‘H%gOﬂ[%gi—fjm

2s+1

a 2s5+1 a S
_ Clj(%—tsjf(t)dt+C2J-(C;T—tsjg(t)dt
0

Putat=T t=— =adt=dT . .dt=—
(04 (04
:T‘fﬁl(TjﬂA_(zjs ( )dT
0 a a a
a —s—1 s
_éj’{ahﬂ T ZS (T)dT
0
161 2541 ViR T
—[— ~a’ —|f(T)dr
Lt e e Dy

_ aslj'(aZSJrl .a2s+lT7s71 T )f (T) dT
0
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= a_s_li((aa)zm I="-1 ) f(T)dT
=a-s—1f —(a;fs)jﬂ -1 f(T)dT
=My (S (D) (5)
M (S ()} () =My {1 (D)} (5)
CONCLUSIONS

In the present work generalized Finite Mellin transform is
introduced in the distributional sense. Some operators and
Adjoint operators for Finite Mellin transform is obtained which
will be useful for solving Partial differential equations.
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