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Integral transforms facilitate the conversion of complicated algebraic equations into simple and 
easily solvable expressions. In contrast to Fourier and Laplace transformations that were introduced 
to solve physical problems, Mellin transformation arose in a Mathematical, Physical and 
Engineering context.  In the proposed work Extended Finite Mellin Transform is introduced. 
 
 
 
 
 
 
 
 
 

  

  
 
 

 
 
 
 

 
 

 
 

 

 
 

 
 

 
 

 
 
 
 
 
 

 
 

 
 
 
 
 

  
 

 
 

INTRODUCTION 
 

In mathematics, the Mellin transform is an integral transform 
that may be regarded as the multiplicative version of the two-
sided Laplace transform. This integral transform is closely 
connected to the theory of Dirichlet series, and is often used in 
number theory, mathematical statistics, and the theory of 
asymptotic expansions; it is closely related to the Laplace 
transform, Fourier transform, and the theory of the gamma 
function and allied special functions. 
 

The Mellin transform is widely used in computer science for 
the analysis of algorithms because of its scale invariance 
property. The Mellin transform method is applied to fractional 
differential equations (Klimek and Dziembowski, 2008) [1].     
It is also used in statistics for finding means, variances, 
skewness, and fuzzy numbers and then  apply to the random 
coefficient autoregressive (RCA) time series models (Appadoo, 
Thavaneswaran and Mandal, 2014) [2]. It is also useful for 
Geophysics. Integral transform facilitate the conversion of 
complicated algebraic equations into simple and easily solvable 
expressions. Their application is now gaining a lot of 
importance in geophysics, particularly in the area of signal 
processing and the quantitative interpretation of potential field 
data. Despite the popularity of integral transform in 
geophysical data analysis, the Mellin transform has remained 

virtually unexploited for geophysical applications (Mohan, 
Reddy and Ofoegbu, 1989) [3]. 
 

The main purpose of this paper is to generalized Finite Mellin 
transform in the distributional sense, Describing testing 
function spaces for Finite Mellin transform, Described some 
operators and properties for Finite Mellin transform. This paper 
is ordered as follows: Definitions are given in section 2, In 
section 3, Testing function spaces for Finite Mellin transform 
are given. The kernel of Finite Mellin transform is a member of 
testing function space is proved in section 4. In section 5, 
Definition of Distributional Generalized Finite Mellin 
transform is given. Some operators on testing function space 
are given in section 6. In section 7, Adjoint operators of Finite 
Mellin transform are given. Some properties of Generalized 
Finite Mellin transform are given in section 8. Lastly we 
conclude the paper.  
 

The notations and terminology as per A. H. Zemanian [4], [5].  
 

Definition: Finite Mellin Transform   
 

The one Dimensional Finite Mellin transform with parameter 

s of  f t denoted by     fM f t F s  performs a linear 

operation, given by the integral transform,   
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Testing Function Spaces for Finite Mellin Transform 
 

The Space , , ,f b cM   : 

Let I be the open set in R R  and E denotes the class of 

infinitely differentiable function defined on I , the space 

, , ,f b cM   is given by, 

       
1

1
, , , ,, , , : / sup q

b c q b c
I

q q q
tf b cM E t t t D t CA q 

      


 
      
 

        

For each 0,1,2,3,................q   and where the constants 

A and C depend on the testing function .                           

        

 
 

The Space , , , ,f b c mM   : 

 

This space is a subspace of (3.1) which is given by, 

       
1

1
, , , ,, , , , : / sup q

b c q b c
I

qq q
tf b c mM E t t t D t C m q 

       


 
       
 

       

for any 0  , where m is the constant depending on the 

function  .    

The space , , ,f b cM 
  : 

 It is a negative space of (3.1) which is given by, 
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Here we also set  
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Lemma 

The function 
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 is a member of , , ,f b cM   if 

Res bb    for any real number c .  

Proof:  Let  
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Consider,      
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where P is a polynomial in s  and q .   
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2 1 1sup 1
I

s b s b sa P s q t P s q t C         

  

(4.1) 

where
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        by (4.1) 

q qCA q  ,   where 
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Here onwards for simplicity we say that   , , ,f b ct M  
 
if 

   1
,

q q
tb c t t D t    , for 0,1,2,3,.....q   . If as 

0,t   0b s   and 0b s  . 

i.e. Reb s      s b  .      i.e.  Re s b       Resb       

i.e. if Reb s b    and for any real number c . 

Thus   , , ,f b ct M    if Reb s b   , for any real number

c .    
 

Distributional Generalized Finite Mellin Transform ( fM T ) 
 

For   *
, , ,f b cf t F  , where *

, , ,f b cF   is the dual space of

, , ,f b cM  and Reb s b   . The distributional Finite Mellin 

transform is defined as,    

        , ,fM f t F s f t t s  ,                       (5.1) 

where  
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 and for each fixed t

 0 t a  . The right hand side of (5.1) is meaningful 

because according to lemma 4,   , , ,, f b ct s M    and

  *
, , ,f b cf t M  .   

 

Operators on the Space , , ,f b cM    

 

Proposition: If   , , ,f b ct M    and  is any fixed real 

number then   , , ,f b ct M    , 0t    and

  , , ,f b ct M 
   , 0t   . 

Proof Consider, 

     
1

1
, , ,sup
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q q
tb c q b ct t t D t                
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Where t t       t t      

                                                  
q qCA q    

Thus,   , , ,f b ct M     for 0t   . 
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Similarly it can shown that   , , ,f b ct M 
   , for 

0t   . 
 

Proposition: The translation (Shifting) operator 

   : t t     is a topological automorphism on 

, , ,f b cM  , for 0t   , and it is a topological isomorphism 

from , , ,f b cM   onto , , ,f b cM 
 , for 0t   . 

 

Proposition: If   , , ,f b ct M    and 0r  , strictly positive 

number, then   , , ,f b crt M   .           

Proof: Consider,       
1

1
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 Where, M is a constant depending on r . 

                                                 
q q q qMCA q C A q    

where C MC  . 

Thus,   , , ,f b crt M   , for 0r  . 

 

Proposition: If 0r  and   , , ,f b ct M    then the scaling 

operator , , , , , ,: f b c f b cR M M   defined by R 

where    t rt  is a topological automorphism.    

 

Proposition: The operator    tt D t  is defined on the 

space , , ,f b cM   and transforms this space into itself. 

Proof:  Let   , , ,f b ct M    . If    tD t t  , we have  
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  . 

Proposition: The differential operator of fM -type 

   : tfM t D t   is a topological autopmorphism on 

, , ,f b cM  .      

 

Proposition: For  1 2,m m m , where 

1 2, 0,1,2,..........,m m   if   , , ,f b ct M   . Then 

  , , ,f b ct M    where    mt D t  . Further the 

mapping :mD      is one-one, linear and 

continuous. 
  

Proof:  For , , ,f b cM   , 
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(6.7.1) 

Thus   , , ,f b ct M    if    , , ,f b ct M  
 
. 

It is obviously linear. It is injective for, if 0mD   then 

c  , c is a constant. If 0c  then 0  and D  is 

injective. But if 0c   then, 

   
1 1

1 1
, ,sup supq q q

b c t b c
I I

t t D c t t c   , for 0q  . 

As the right hand side is not bounded we conclude that 

, , ,f b cM   , which is a contradiction. Hence ‘ c ’ must be 

zero and therefore 0  . For continuity we observe from 

equation (6.7.1) that, 

                                , , , , ,m
b c q b c qD M      

Where M is some constant. Thus the theorem is proved.             

 
 

Proposition: For R  and   , , ,f b ct M    , 
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Thus   , , ,f b ct M    if   , , ,f b ct M    . 
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Adjoint Operators of Fourier-Finite Mellin Transform 
 

Proposition: The adjoint shifting operator is a continuous 

function from 
*

, , ,f b cM   to 
*

, , ,f b cM  . The adjoint operator 

   f t f t    leads to the operation transform formula 

     
ffM f t RM f t  . 

Proof: Consider, 
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Proposition: The adjoint scaling operator is a continuous 
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Properties of Generalized Finite Mellin Transform 
 

Linearity Property: If   fM f t is generalized finite mellin 

transform of  f t and   fM g t is generalized finite 

mellin transform of  g t then 

             1 2 1 2f f fM C f t C g t s C M f t s C M g t s     
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CONCLUSIONS 
 

In the present work generalized Finite Mellin transform is 
introduced in the distributional sense. Some operators and 
Adjoint operators for Finite Mellin transform is obtained which 
will be useful for solving Partial differential equations.   
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