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Despite insolubility, non-specificity and high toxicity of therapeutics associated with biological 
obstacles such as drug resistance, blood-brain barrier and systemic enzymatic degradation, patients 
have to take their high dosages to attain the expected therapeutic efficacy for the disease-treatment. 
To overcome these complications, various drug carriers are being investigated in the 
pharmaceuticals to supply their therapeutics to the specific sites in the body. Nowadays, mesoporous 
silica nanoparticles (MSNPs) have emerged as promising candidate because they can overcome all 
the barriers maximally by producing their biological effectiveness in a controlled and sustained 
manner to the diseased site. As the mesoporous silica materials have the excellent favorable 
physicochemical features, the multi-functionalized MSNPs are capable to target and release their 
cargos into the diseased cells according to the requirement upon exposition to external or internal 
stimuli. This review demonstrates the state of knowledge for the consideration MSNPs as delivery 
system against various diseases. 
 
 
 

  

  
 
 

 
 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 
 
 
 
 
 
 

 
 

 
 
 
  
 

 
 

INTRODUCTION 
 

Many people suffer from acute and chronic microbial 
infections, biofilm development, asthma, bronchitis, 
tumorigenesis and neurodegenerative diseases throughout the 
world. When the body is exposed by virulent microorganisms 
and / or various potent chemicals, the disease is induced, 
promoted, and progressed. The invasions or administration of 
microorganisms or chemicals are counteracted by body defense 
mechanisms such as innate and acquired immune responses [1] 
and antioxidant defense actions [2,3] for their protection from 
infection or any disorder. The disease is generally initiated 
when the body defense mechanisms cannot overcome against 
the biological inductions of infectious agents. As conventional 
therapy has so many limitations to target active compounds to 
specific site of interest with least toxic effect to surrounding 
healthy cells, it is needed to design a delivery system which not 
only can act as antimicrobial and anti-carcinogenic agent but 
also can act as delivery vehicle to target lead compounds to 
specific sites with insignificant side effect in the biological 
system. 
 

In the last decades, the investigations regarding active 
components transport technologies have been modified 
appreciably as the complex human body is generally dependent 
on the developed disorder to be treated while the procedures to 
administer different lead compounds to cells are quite different. 

Additionally, as drugs-toxicity can affect the healthy cells of 
the body, it has given emphasized to target and control the 
therapeutics into the diseased cells specifically with a sustained 
liberation by overcoming mostly all the biological barriers to 
avoid secondary adverse side effects. In this context, 
nanotechnology has restructured the delivery and targeting 
processes by changing the perspective of the pharmaceutical 
industries as nanoparticles may have extent below 100 nm, get 
dissolved, and may entrap, encapsulate or anchor lead 
molecules, ligands by their functionalizations affecting 
biodistribution, bioavailability to target specific diseased sites 
as efficient and potent delivery carriers. MSNPs among other 
nanoparticles, have emerged as a decisive and innovative 
delivery carrier owing to their exclusive mesoporous 
configuration to preserve chemical stability, biocompatibility, 
surface functionality by ensuring the regulated components-
liberation and targeted contents-delivery of various active lead 
compounds [4,5]. 
 

The superior textual characteristics such as good 
biocompatibility and stability, high surface area, tunable pore 
diameter, large pore volume, narrow and ordered pore size 
distribution, high component-loading capacity, facile surface 
chemistry, and easy silanol-containing surface 
functionalizations associated with capping / or coating / or 
coupling of targeting ligands through chemical linking with 
other therapeutic molecules make MSNPs suitable for targeting 
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lead compounds to a particular site in a controlled and 
sustained liberation manner [4,6-12]. In general, MSNPs interact 
with microbials and diseased cells to disrupt them through 
penetration of the cell membrane or by producing reactive 
oxygen and / or nitrogen species to cause cellular oxidative 
damages such as lipid peroxidation, mitochondrial dysfunction, 
aberrent aggregation of nucleoplasmic proteins and DNA 
destructions through different signalings e.g. apoptosis and 
necrosis [13-23]. This review demonstrates different surface 
modified MSNPs to consider as a potent delivery system in bio 
/ nanomedicine for therapeutic applications against several 
diseases and for biofilm eradication. 
 

Synthesis of mesoporous silica nanoparticles  
 

MSNPs-synthesis is performed at a low concentration of 
surfactant as a structure-directing agent dependent upon the 
interactions between the cationic surfactant and the growing 
anionic oligomers of orthosilicic acid to produce their smaller 
sizes [4,24]. By hydrogen bonding and electrostatic interactions, 
the silica precursors such as tetrakis (2-hydroxyethyl) 
orthosilicate, alkoxides and pure alkoxysilanes, orthosilicic 
acid, glycerol-obtained polyol-based silanes, sodium 
metasilicate, tetramethoxysilane (TMOS) and tetraethyl 
orthosilicate are concentrated at the hydrophilic interfaces to 
form mesoporous amorphous silica [4,25] while the residual 
surfactants can be removed by extraction and calcinations 
method [26]. The synthesis procedures of MSNPs are mainly 
followed by microwave, hydrothermal, sol-gel and template 
methods [27-32]. 
 

Microwave synthesis method 
  

Microwave, a kind of electromagnetic wave (frequency 300 
MHZ-300 GHZ), is operated under the action of 
electromagnetic field with both outside and inside rapid 
heating, energy efficient and time saving, while MSNPs are 
synthesized by microwave irradiation within 6 h, resulting 
ordered pore size with good crystallinity [33-36]. 
 

Hydrothermal synthesis 
 

For hydrothermal synthesis, surfactant as a template agent and 
alkali or acid as a catalyst are used, and then an inorganic 
substance is slowly added to the mixed solution for obtaining a 
hydrogel which is transferred to the autoclave to obtain high 
pressure and temperature for the reaction precursors for their 
separation with the removal of organic matter [37]. 
 

Sol-gel method 
 

Sol-gel method provides controlled functionalization on the 
synthesized MSNPs-surface by their formation in the solution 
of glue body suspension with a subsequent three-dimensional 
network of polymer gel chain exhibiting simple equipment 
controlled operation, low temperature environment and high 
pure yield [38]. 
 

Template synthesis method 
 

Template synthesis for surface activity in the solvents with 
alkaline or acidic conditions for forming micelles, inorganic 
precursors to micelles react slowly as template and 
subsequently burn back for forming ordered MSNPs [39-42]. The 
soft template method relates the non covalent bond between the 
inorganic reactants and the surface active agents, while the 
yield varies 10-1000 nm. The hard template method is used for 

filling an object with its template pores ranging 2-50 nm for 
obtaining ordered MSNPs (2-50 nm) after the removal of the 
template. 
 

In brief, pyrogenic amorphous silica nanoparticles are 
synthesized in closed reactors by the alkyl chlorosilanes 
(CH3SiCl3, HSiCl3, SiCl4) hydrolysis in a hydrogen / oxygen 
flame at 1200ᵒC-1600ᵒC. Proto and subsequent primary 
particles of SiO2 are generated by nucleation, condensation and 
coagulation process following their aggregation and 
agglomeration. Precipitated silica gel and silica nanoparticles 
consisting of haphazardly attached spherical polymerized 
primary particles are generally produced by the acidification of 
sodium silicate with sulphuric acid. The precipitate is then 
filtered, cleansed, dehydrated and milled with a controlled way 
to yield MSNPs having average 2-50 nm pore diameters. These 
uniform pores may be achieved by the reaction of 
tetraethylorthosilicate (TEOS) and template of surfactant 
amphiphilic polymers under acidic or alkaline condition 
following evacuation by calcinations or washing with a solvent 
[43,44]. Colloidal silica nanoparticles are synthesized through the 
partial neutralization of an alkali-silicate solution by ion 
exchange, electro-dialysis or acidification to form silica nuclei 
(1-5 nm) and then either fusion form in chains resulting silica 
gel by reducing pH <7 or adding salt or the gradual colloidal 
growth of the separated subunits by keeping pH slightly on the 
neutral alkaline side. The emerging colloidal suspension is then 
stabilized by the inclusion (upto 10%) of HCl, NH3, NaOH or 
KOH or by substitution of electrostatic Si atoms such as Al to 
get higher negative charge keeping pH below the neutral point. 
The resulting suspension is then concentrated by liquid phase 
evaporation while hydrogen ions from colloidal silica surface 
incline to segregate in aqueous solution forming negative 
charges. Spherical colloidal silica nanoparticles having 
controlled uniform porosity and size are also synthesized by the 
alkyl silicates hydrolysis and consequent silicic acid 
condensation in ethanol and ammonia [45].  
 

Functionalization of mesoporous silica nanoparticles 
 

As the pore walls and the outer surface of the MSNPs possess 
silicon hydroxyl groups, their functionalization can alter the 
pore hydrophobicity / hydrophilicity [46], pore size and acidity 
[47], and adjust the chemical properties of the MSNPs-surface 
[48]. In this aspect, MSNPs modified by the amino group can 
effectively enhance the loading amount and prolong the 
sustained release owing to the strong interactions between the 
carboxyl and amino groups of the IBU. As the hydrophilicity of 
the amino groups is better than that of the silanol groups, the 
surface functionalization of the MSNPs can significantly 
improve the hydrophilicity of MSNPs by enhancing the 
hydrophilicity of the molecular loaded amount [49]. 
 

Co-condensation approach for creating bi-functional MSNPs 
was performed where organosilane (R-TES or R-TMS) (R, 
organic functional groups, TES, triethoxysilane, TMS, 
trimethoxysilane) is adjoined into a reaction solution 
containing tetraethylorthosilicate (TEOS), or instantly after 
TEOS-adjoining to afford incorporation of organosilanes in the 
final substance [50]. 
 

Surface functionalization with inorganic and organic 
substances can provide various functionalities of MSNPs for 
regulating diffusion and liberation of cargos and cell surface 
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recognitions among others. For biomedical applications, 
MSNPs have been designed to attach their biocompatible 
external surfaces with molecular or macromolecular moieties 
for providing tunable interactions with the biological 
environment for making the delivery system highly 
controllable [51-53]. The triggered cargo release from MSNPs 
may be performed through gating concepts where pore gating 
systems consisted of nanoparticles or bulky molecular groups 
such as gold, iron oxide -nanoparticles, proteins block the pore 
entrances to seal the interior mesoporous environment [48,54,55] 
while the macromolecular structures generally become 
degradable or anchored to the MSNPs-surface through linkers 
cleaved by stimuli exposure [56,57]. Better pore sealing can be 
achieved by a complete MSNPs coating of oligonucleotides, 
polymers and lipids [58-67] while competitive displacement or 
phase transitions reactions may lead to pore openings and 
efficient cargos delivery [68,69]. The other strategy for controlled 
component release relates component attachment in the porous 
system of the silica nano-vehicles where covalent or 
coordinative bonds may be cleaved by stimuli such as reducing 
agents or competitively binding molecules for activating 
components liberation [70-72]. 
 

Characterization of mesoporous silica nanoparticles 
 

The morphology and particle size of MSNPs may be detected 
by Field Enission Scanning Electron Microscopy. The 
homogeneity and porous structure of the MSNPs may be 
identified by the High-Resolution Transmission Scanning 
Electron Microscopy. The particle size distribution and the zeta 
potential of the MSNPs may be determined by using Dynamic 
Light Scattering. The textural properties may be analyzed by 
nitrogen adsorption isotherm utilizing Micromeritics ASAP 
Porosimeter following the Brunauer-Emmet-Teller method 
where the pore size and the specific surface area (SBET) are 
calculated from the desorption curve, and the average pore 
diameter is worked out from the pore volume presuming 
cylindrical pore and SBET determined by BET surface area. 
 

Mechanism of action of silica nanoparticles 
 

Silica nanoparticles upon exposure to cells can generate 
endocytosis- dependent or independent silicon-based free 
radicals such as Si. SiO. and SiOO. owing to nanoparticles’ 
oxidation [73,74]. These radicals, inturn, induce reactive nitrogen 
species (RNS) and reactive oxygen species (ROS) generations 
directly or by cell-activation. In this aspect, O2

.-, followed by 
H2O2 and .OH generations derived by the NADH oxidase and 
NADPH dehydrogenase activities, and NO/ONOO- generation 
from activated NO synthase, and silicon radicals, by binding 
proteins, lipids, nucleic acids through thiol, carboxylic, azide, 
amine and phosphate groups, can produce cellular oxidative 
damage supported by oxidative stress-induced membrane 
disruption, DNA destruction or aberrant aggregation of 
nucleoplasmic proteins, cell cycle arrest, apoptosis and necrosis 
[75-77]. The involvement of mitochondria for the generation of 
ROS relates the leakage of electron transport chain i.e. its 
pathway damage where cellular apoptotic death takes place by 
mitochondrial intrinsic pathway and receptor-mediated 
extrinsic pathway [78], and cellular necrosis occurs due to the 
massive cell membrane damage leading to rapid intracellular 
ATP levels reduction and cellular osmotic balance loss [79]. 
Silica nanoparticles may also be adsorbed to the cell-surface 

due to electrostatic interaction affinity resulting membrane 
damage by abrasion and binding to other sub-cellular 
organelles to deactivate their normal functions.   
 

Mesoporous silica nanoparticles as delivery system 
 

Drug delivery 
 

MSNPs display unique features as ideal nanocarriers to host for 
protecting them through transportation of cargos to the target 
site for their feasibility to integrate targeting components in the 
external surface for directing to the affected tissues with 
increasing specificity and diminishing toxicity. In this context, 
their pore entrances may be capped by utilizing stimuli-
responsive gatekeepers to maintain and operate pore opening 
for cargo-release to the target.  
 

For selective passive targeting, MSNPs can extravasate through 
enlarged pores of capillary endothelium to reach tumor site by 
enhanced permeation and retention activity [80,81], whereas for 
active targeting, surface functionalizations of MSNPs with 
molecules make them capable in targeting for selective 
interactions with specific membrane receptors possessed in 
tumor cells. The surface modification of MSNPs with targeting 
ligands directs them for their affinity towards the blood vessel 
to irrigate solid tumor while tumor destruction takes place by 
disrupting nutrients and oxygen supply [82]. Recently MSNPs 
functionalized with folic acid and triphenylphospine to bind to 
folate receptor and mitochondrial membrane respectively for 
cancer cells have been developed for their targeting as efficient 
antitumor therapies [83]. As MSNPs have poor penetration 
ability on diffusion within tumor mass owing to the residence 
of collagen-rich extracellular matrix, these nanocarrier systems 
have been proposed to design a pH-sensitive collagenase 
attached with coating of radical polymerization of acrylamide 
as the structural monomer, 2-aminoethylmethacrylate for 
providing amino groups to attach to nanoparticles’ surface, and 
ethylene glycol dimethacrylate as the pH-partible cross-linker 
[84]. Under acidic pH of solid tumor environment, 
functionalized MSNPs break triggering the collagenase-
liberation for digestion the extracellular matrix leading to their 
improved penetration to the tumor site. In this concern, as 
human mesenchymal stem cells (MSCs) have also the 
capability to migrate towards tumors, MSCs and doxorubicin 
loaded-MSNPs have been applied as a tool for efficient cancer 
cell -death both in vivo and in vitro [85,86].  
 

Internal stimuli such as pH, enzymes and redox potential, and 
external stimuli such as light, ultrasound and magnetic fields 
may be accomplished through attaching pore blocking caps 
throughout linkers to cleave and liberate cargo to the target site. 
The capping agents such as polymers, macromolecules or 
inorganic nanoparticles can seal the mesopore entrances by 
hindering premature components release. The coatings of 
inorganic and organic chemicals may also be used as blocking 
caps and capable to degrade under stimulation allowing pore 
uncapping and cargo release. The incorporation of super 
paramagnetic iron oxide or other metals within MSNPs allows 
the employ of alternating magnetic fields and physicochemical 
changes by triggering temperature increase while gatekeeper 
moieties become capable to provoke pore opening and drug 
release to target area upon exposure [87-92]. Mechanophores i.e. 
chemical bonds e.g. of 2-tetrahydropyranyl methacrylate 
(hydrophobic monomer) may be cleaved and transformed to 



Ardhendu Kumar Mandal., Mesoporous Silica Nanoparticles as Delivery System Against Diseases 
 

28820 | P a g e  

hydrophilic methacrylic acid under ultrasound stimulus while 
this moiety is used for MSNPs drug delivery as mesopore 
gatekeeper [93-96]. MSNPs are also decorated with porphyrin 
nanocaps attached through ROS-cleavable linkages while 
porphyrin blocking caps upon visible light exposure induce 
singlet oxygen molecules to split the sensitive linker and 
activate the mesopores-openings to liberate cargo to the target 
site [97].  
 

Gene delivery 
 

Nucleic acids, including DNAs such as plasmid DNAs 
(pDNAs) which act through deficient gene re-expression in 
diseased tissues, endogenous micro RNAs (miRNAs) and 
exogenous small interfering RNAs (siRNAs) which are capable 
of recognizing endogenous target mRNAs via sequence 
complementarity to control gene expression via repressing 
translation or inducting degradation by RNA interference 
(RNAi), and antisense oligonucleotides (ASOs), the single-
stranded nucleic acids and complementary to endogenous 
mRNAs, which can attach with to control mis-spliced mRNAs 
through their inactivations, are all potent gene regulators as 
therapeutic drug candidates [98-100].  To protect nucleic acids 
from poor membrane permeability and serum unstability, 
nucleic acid-MSNPs complexes have been prepared through 
electrostatic and hydrophobic interactions as simple nucleic 
acids loading onto MSNPs and their rapid liberation upon 
delivery into cells. Several investigators showed their 
nanoparticles’ encapsulation and delivery in different ways 
where amino molecules utilized to functionalize MSNPs-
surface for pDNA loading [101,102], polyethyleneimine coating 
on MSNPs-surface used to anchor DNA and siRNA [103,104], 
poly-arginine and poly-lysine coated on MSNPs-surface to 
condense siRNA [105,106], which may be associated with 
different cargos-loading inside the MSNPs-pores [107] to assist 
their deliveries into cells [108]. MSNPs may also be 
functionalized with various targeting ligands through basic 
chemical reactions such as maleimide / thiol ally, condensation 
reactions between isothiocyanates and amines or between 
amines and carboxylic acids to deliver DNAs through sugar 
receptor-mediated, siRNA through folate receptor-mediated 
specific cells [109-112]. In this context, nucleic acid-guided 
therapy implies intracellular delivery of nucleic acid-MSNPs 
complex while they are endocytosed into cells via receptor or 
non-specific -conciliated cellular accumulation followed by 
their disappearance from the endosome / lysosome, and nucleic 
acids liberation from the complexes into the cytoplasm to 
employ their biological activities [113]. PEI-overlay of MSNPs 
on the DNA delivery efficacy [103] and miR-34a encapsulated 
MSNPs conjugated with an antibody which targets the cell 
surface antigen disialoganglioside GD2 for selective delivery 
were investigated by some researchers [114]. siRNA human 
epidermal growth factor receptor 2 (HER2), anti HER2 and 
siRNA vascular endothelial growth factor (VEGF), were 
loaded separately onto MSNPs to deliver them into HER2-
positive breast cancer cells and angiogenic tumor cells 
respectively [115-118]. In this aspect, P-glycoprotein siRNA and 
doxorubicin loaded in MSNPs showed their inhibitory delivery 
efficiency against drug-resistant breast cancer cells [119]. Upon 
small molecule-ASO-MSNPs complexes delivery into the cells, 
small molecules inside the nanoparticles-pore could not restrict 
miRNA in the beginning owing to the capping of the pore with 
ASOs from entry of small molecules to cytoplasm but the 

anchoring of ASOs with endogenous miRNAs exposed the 
pore and liberated the encapsulated cargos into the cytoplasm 
to realize dual-restriction of miRNAs such as miR-122 and 
miR-21 expressed in hepatocellular and ovarian cancer cells 
respectively [120-121].  
 

Biodistribution and elimination of mesoporous silica 
nanoparticles 
 

Biodistribution of MSNPs in animal differs depending on their 
administration route such as intravenous, intra-peritoneal, oral 
and subcutaneous associated with the particles’ shape, size, 
surface modifications, charge and concentration. It was 
investigated that MSNPs were accumulated more in tumor site, 
and the highest accumulation of the particles was monitored in 
the kidney and lungs, and lower uptakes in liver, heart, 
intestine and spleen [122]. Folate-anchored MSNPs showed 
enhanced tumor accumulation for their specific targeting to 
cancer cells. In this concern, MSNPs composed of -Si-O-bonds 
become susceptible in an aqueous medium to nucleophilic 
attack by hydrolytic water hydroxide into orthosilicic acid 
(Si(OH)4) from siloxane (Si-O-Si) which is biocompatible and 
eliminated easily through the activity of the complement 
system or urination [123-126]. Another study demonstrates that 
positively charged nanoparticles have been eliminated from the 
liver through gastro-billiard system in the feces, while 
negatively charged particles have been sequestered within the 
liver [50].  
 

Immunotoxicity of silica nanoparticles 
 

MSNPs, upon entering the body, probably interact with 
immune cells monitored in various cell lines. THP-1-derived 
macrophages were exposed with 100 µg/mL silica 
nanoparticles (30 nm) for 6 h, while a significant enhancement 
of interleukin-1-beta (IL-1β) via phagocytic uptake of 
nanoparticles was observed [127]. Larger sized silica 
nanoparticles (150-200 nm) phagocytosed by microglial cells 
after 24 h exposure to various concentrations (0.0728-7.28 
µg/mL), also showed a significant increment of IL-1β [128]. 
Silica nanoparticles (10 and 50 nm) showed dose-dependent 
(6.25-100 µg/mL) enhancement and decrement of TNF-α and 
IL-6 productions respectively in RAW.264.7 macrophages, 
while their amino surface-functionalized counterparts showed 
insignificant toxicity [129]. 
 

CONCLUSIONS AND FUTURE PERSPECTIVES 
 

MSNPs appear as promising delivery device as they combine 
their constituents’ stability and biocompatibility with versatile 
chemistry on the control of dimensions, morphology and 
surface properties, and are capable of encapsulation or grafting 
with various active components to release them in a sustained 
manner to target site overcoming the biological barriers to 
destroy microbes, infected cells, drug resistant cells and 
biofilms. Immune system upon the exposure of MSNPs, 
induces cascades of events such as the release of endosomal 
substances, productions of ROS, RNS, cytokines and 
chemokines resulting inflammation though the responses are 
regulated by the designing of the size, shape, surface area, 
surface charge and porosity of the nanoparticles. Therefore, it 
is needed to coat cargos-encapsulated MSNPs with ligand to 
minimize any toxicity and to target components to specific site 
of interest for proper biomedical application against different 
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diseases. In this concern, thorough in vivo study regarding their 
biodistribution, biocompatibility, degradability, elimination, 
pharmacokinetics and toxicity should be investigated 
systematically before their clinical translation. 
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