

*Corresponding author: Vishal Gupt
Department- CSE, SRM Institute of Science & Technology, Chennai, India

ISSN: 0976-3031

Research Article

ANDROID APPLICATION MANAGEMENT AND ENCHANCEMENT

Vishal Gupta., Dhikhi T., RupamHalder., Siddharth Shankar Sharma
and Sanjeev Mudaliar R

Department- CSE, SRM Institute of Science & Technology, Chennai, India

 DOI: http://dx.doi.org/10.24327/ijrsr.2018.0909.2774

ARTICLE INFO ABSTRACT

The paper presented discusses the revolutionary Android Apps, its effect on the Android smart
phones and disadvantages of having apps running in background along with some suggested
improvement. The android apps are made from scratch using Java as a basic language, but apart
from that, a particular App may use other components of the smartphone like the various CPU,
GPU, RAM, and Battery. The apps are capable to run in background also. This enhances the multi-
tasking feature of the android operating system, but the major disadvantage of this feature is that the
apps running in background starts accumulating and thereby consuming excess RAM & memory.
Due to this, there is a shortage of the necessary amount of RAM and as a result, the processor slows
down ultimately resulting to app crashes and increased processor temperature. The abnormal heating
eventually causes battery drainage at a higher rate.

INTRODUCTION

Android Mobile Applications are the backbone of the today’s
smartphones. These apps have different categories like
ecommerce, travel related, logistics messaging and some other
utilities app. The increased number of different android apps in
the market has given rise to the problem of system failures in
android apps causing quicker battery drainage, Lower RAM
availability causing the phone to slow down and internal
memory shortage. All these causes ultimately result in phone to
heat up enormously and end up crashing all the apps. The
proper understanding of different aspects of these android apps
will help us to optimize the usage of the phone memory and
processor.

File Storage in Android

Android provides many options to save the app data. The
solution we choose depends on our needs, such as how much
data we requires, what kind of data we want to store, and
whether the data is needed to be private or accessible to the
user and other apps . There are different types of data storage
available on Android and they are:

 Internal file storage: It store app-private files in the
file system.

 External file storage: It store files in the shared
external file system. This is generally used for shared
user files, such as photos.

All of these options are available for app-private data, to share
some files with other apps, you should use the File Provider
API. To expose app's data to other apps, we must use a Content
Provider. Content providers give us full control of what
read/write access is available to other apps.

Internal storage in android

By default, files which are saved in the internal storage are
generally private to the app, and other apps cannot access them.
This makes internal storage a ideal place for internal app data
that the user doesn't need to access directly. The system
provides a private directory for each app where we can
organize any files which our app needs.

When the user uninstalls the app, the files saved on the internal
storage are deleted. Because of this we should not use internal
storage to save anything that user expects to persist
independently of the app.

External Storage in Android

Every Android device have a shared "external storage" space
that where we can save files. It's not a guaranteed to be

Available Online at http://www.recentscientific.com
 International Journal of

Recent Scientific

 Research International Journal of Recent Scientific Research
Vol. 9, Issue, 9(E), pp. 28987-28991, September, 2018

Copyright © Vishal Gupt et al, 2018, this is an open-access article distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is
properly cited.

DOI: 10.24327/IJRSR

CODEN: IJRSFP (USA)

Article History:

Received 13th June, 2018
Received in revised form 11th
July, 2018
Accepted 8th August, 2018
Published online 28th September, 2018

Key Words:

Android Application, App usage, Battery
Drainage, Memory management, RAM
management.

Vishal Gupt et al., Android Application Management and Enchancement

28988 | P a g e

accessible to this space. This storage is physically removable
(such as an SD card). Files stored in external storage are world-
readable and changes can be made by the user when they
enable USB mass storage to transfer data on a computer. So
before we try to access a file in external storage in our app, we
should check for the availability of the files we are trying to
access. We should use external storage for user data that must
be accessible to other apps and saved in memory even when the
user uninstalls the app. The system has standard public
directories for these kinds of files, so the user has a location for
all of their, ringtones, music, etc. We can store data to the
external storage in an app-specific directory that the system
deletes when the app is uninstalled. This can be a useful
alternative to internal storage if we need more space, but there
is no guaranteed that file will be accessible because the user
can remove the SD card anytime.

Shared Preferences in Android

Shared Preference is used when we don't need to store a lot of
data. The APIs of Shared Preferences allow us to read and
write persistent key-value pairs of primitive data types like
Booleans, floats, ints, longs, and strings. The key-value pairs
are written on the XML files that persist across user sessions,
even when the app is killed or forced to stop. We can specify a
name for the file or use per-activity files to save to data. The
"shared preferences" named APIs is a bit misleading because
the API is not for saving "user preferences," we can use Shared
Preference to store or save any simple data. However, if we do
want to save user preferences for the app, then we should know
how to create a settings UI, which uses Preference Activity to
make a settings screen.

Databases

SQLite databases have full support by android. Database which
we create is accessible only by our app. However, instead of
using SQLite APIs directly we should create and interact with
the databases with the library. The Room library use to provide
an object-mapping abstraction layer that permits the fluent
database access while using the full power of SQLite. Even
when we can save data directly with SQLite, the SQLite APIs
require a huge amount of time and effort to use. For raw SQL
queries there is no compile-time verification. When our schema
changes, we manually need to update the affected SQL queries.
This will be time consuming .We have to write lots of
boilerplate code to convert SQL queries into Java data objects.

Overview of Memory Management

Paging and memory-mapping is used by the Android Runtime
(ART) and Dalvik virtual machine use to manage memory.
This means that whenever any memory an app modifies-
whether by touching mapped pages or by allocating new
objects-remains resident in RAM. The only way to release
memory from an app is to release object references that is hold
by the app and ensuring the memory is available to the garbage
collector. But there is one exception: any files mapped in
without modification, like code, can be paged out of RAM if
the system decide to use that memory in different place.

Garbage collection

The ART or Dalvik virtual machine, keeps track on every
memory allocation. Once a piece of memory is not needed by a
program, it come back to the heap. The system for claiming

unused memory in a managed memory environment is known
as garbage collection. Garbage collection has basically two
goals: find data objects in a program which cannot be accessed
in the future; and reclaim the resources which is used by those
objects. In android’s memory there are different buckets of
allocations that it tracks, based on the assumed life and size of
an object being allocated. When an object remain active long
enough, it can become an older generation, followed by
permanent generation. Every heap generation has its own upper
limit on the amount of memory that objects can occupy.
Whenever a generation starts to fill up, the system executes a
garbage collection to free some memory. The duration of the
garbage collection depends on the generation of objects and
how many active objects present in each generation. Even
though garbage collection can be very fast, it can still affect
performance of the app. The system has some rules for
determining when to perform garbage collection. When it
satisfy all the rules, the system starts garbage collection. If
garbage collection occurs between a processing loop like an
animation or during music playback, it will increase processing
time. For efficient and smooth frame rendering 16ms threshold
is taken in usage

Share memory

To fit everything it required in RAM, the RAM pages is being
shared across processes. It can be done in the following ways:
When the system boots and loads common framework code
and resources (such as activity themes) the Zygote process
starts. The system forks the Zygote process then loads and runs
the app's code in the new process, by doing this a new app
process will start Most static data is mapped into a process.
This technique make sure the data is shared between processes,
and when needed it is allowed be paged out. Example of static
data include: Dalvik code, app resources, and traditional project
elements. In most of the places, Android use to shares the same
dynamic RAM across processes using explicitly allocated
shared memory regions. The extensive use of shared memory,
determine how much memory a app required to run. Allocate
and reclaim app memory The Dalvik heap determine the virtual
memory range for each app process. This defines the logical
heap size, which can grow but only up to a limit that the system
determine. The physical memory used by the heap is not the
same as the logical size of the heap. While inspecting the app's
heap, Android use to computes a value called the Proportional
Set Size (PSS), which accounts for both dirty and clean pages
that are shared with other processes-but only in an amount
that's proportional to how many apps share that RAM. This
PSS is your physical memory footprint.

Restrict app memory

Android sets a hard limit on the heap size for each app to
maintain a functional multi-tasking environment. How much
RAM the device has available overall determine the exact heap
size limit. After reaching the heap capacity if app tries to
allocate more memory, it can receive an Out Of Memory Error.
Sometime we tries to determine exactly how much heap space
you have available on the current device-for example, to
determine how much data is safe to keep in a cache. By calling
getMemoryClass(),we can query the system for this figure.
This method returns an integer shows the number of megabytes
available in app's heap.

International Journal of Recent Scientific Research Vol. 9, Issue, 9(E), pp. 28987-28991, September, 2018

28989 | P a g e

Switch Apps

Android keeps apps that are not foreground when users switch
between apps, Cache memory plays a important role in
switching app. If a app has a cached process and it occupied
some memory which it does not need, then even when the app
is not in used affects the system's overall performance. As the
system runs low on memory, it kills processes in the LRU
cache starting with the process which spend most of the time in
cache .The system also control the processes that occupy most
memory and can terminate them to free up RAM

Battery Consumption

Batteries of all the newer generation of smartphones have a
certain life known as charge cycles. These batteries can be
charged to 100% and discharged only a certain number of times
only, after which, the battery starts to degrade its performance
and quickly discharging. These are experimental results
obtained with the testing of android under monitored
circumstances. [1] There are many factors draining the batter
from android.

GPS

The global positioning system or better known as GPS keeps a
track of the current position of the smartphones. Many apps use
this feature to locate the current location of the phone and
provide the optimized results. These apps include cab booking
and travelling apps. The GPS constantly drains battery and
keeping it activated for longer hours results in lower
performance and higher rate of battery drainage. The GPS
consistently uses mobile data and keeps updating the
coordinates of the smartphone every second to ensure the
current and updated position. This is a useful feature of
Android Smartphones but keeping it on for unnecessary uses or
when not in use may prove to be harmful for phone battery life.

Mobile Data & Screen Turn - On Time

Mobile data ensures that the smartphones are connected to the
internet through any network provider service. The internet is
used in many apps. Therefore, it is necessary that mobile data
is turned on whenever an internet access is required. But,
keeping the smartphone connected to the internet has its own
disadvantages of draining the battery. The smartphone screen
remains on whenever an app is being used. The screen of a
smartphone is responsible for the most amount of battery
drainage. The Led lights remain on during the whole duration

of keeping the apps running which further contributes towards
battery drainage

Suggested Enhancements

Disadvantages of Existing System

Though the existing system of installing every application in
the respective device is quite trending, and is practiced by
nearly every user, there are still some disadvantages of the
existing system that is quite hard to neglect. Some of the
disadvantages include:

 Excessive allocation of internal storage by different
categories of installed APKs.

 Due to excessive allocation of internal storage, the
buffered storage on which the corresponding device is
working on, contracts and due to this, any operation of
device slows down, which results in poor
performance.

Most of the applications installed in device are populating the
space, and due to this crowding, RAM allocation is high, since
more applications in device results in more background
operations, which is usually done in the presence of RAM.

 More availability of RAM results in more efficient
operation of applications on devices. But if RAM gets
crowded by several applications installed inside the
device, then the operation becomes less efficient and
gets slower after time.

 Also, due to the reason that the internal storage and
RAM allocation is populated by various applications
installed, the operation increases with more time
complexity, and the performance is less efficient. This
results in draining of battery. Even with battery saving
mode, the performance of battery is decreased as
compared to the device having less applications
installed.

Need for Proposed System

The existence of current system is growing at a good scale. In
order to overcome the drawbacks of the existing system, the
paper presents a proposed system, which can cover all the
demerits of the existing system which has been listed.

The proposed system is needed for the following reasons:

 Due to the drawbacks of existing system, the device
gets slower.

 Consumption of RAM and internal storage increase.

Battery usage is increased due to more operations of specific
applications. To overcome these drawbacks, the system needs a
solution where the consumption of RAM, internal storage as
well as battery consumption is relatively lesser than the original
performance.

Figure 1 ION interface in Android System

Vishal Gupt et al., Android Application Management and Enchancement

28990 | P a g e

Module Description

The modules in the app can be described as follows:

 Webapp or Inbuilt application switch interface: This
module consists of choosing either of the two options
i.e., if the application user wanted to open is inside a
Webapp, or the user directly opens the installed
application through APK call.

 Application menu module: This module displays a list of
applications categorised according to the purpose. For
example, Travelling and tourism categories include
Make My Trip, Goibibo, IRCTC app, trivago, etc.,
Transport facilities include Uber, Ola, Taxi For Sure,
etc., Online food orderings include zomato, swiggy, uber
EATS, foodpanda, etc., E-commerce websites include
flipkart, amazon, ebay, etc., and many more.

 Webapp Module: This module has an interface of
Webapp, that opens a website inside an application, with
all the configurations needed. A website link is entered
inside this webapp module, and then with the access to
internet permission (Declared inside the app’s
Manifest file), the interface will open the website along
with the supported extensions (like JavaScript, jQuery
extensions, etc.)

If the selected option in the start is APK call of inbuilt
application, then it will first check if the application selected is
installed in the respective device. If it is, then it will directly
call the app through the APK call. If not, then the application
will automatically open the Webapp module, with the required
link of the application. After using the Webapp, the application
can be directly closed wotout saving the data or it can be
minimized.

Introduction to proposed system

As we all know that in today’s world there many kinds of
android applications present for a particular department. Let’s
consider in case of shopping section there are many
applications available like Amazon, flipkart, Snapdeal, etc. In
case of particular section for clothes there applications like
Myntra, Club factory etc. For Booking of taxi Ola, Uber etc.
are available.

Hence from the above explanation we can observe that there
are multiple applications present for a different kind of section.
Now in case of user, they have to install different applications

for different types of sections like ola or uber for cab booking,
amazon or flipkart for shopping etc. Now due to the installation
of different types of applications in the user’s device they take
up most of the memory space of the device as well as put extra
pressure on the device.

By studying the current studies, it can be observed that the
more number of applications installed in the device, the greater
amount of storage it takes in the device as well as it increases
the pressure on RAM. Keeping the above factors in mind we
can design an application which can act as a platform to
aggregates 35+ different apps in one place, across categories
like cabs, food, recharge, bill payment, news, cricket,
horoscopes and more. The basic plan is to design the
application in such a way that it can give the user, the access to
multiple applications but also to arrange the allocation in a
well-organized manner.

The main aim of the application will be supporting the user by
providing access to multiple applications in a well-organized
manner which will help the user to check different application
for a particular section.

Keeping the demerits of the current situation of keeping several
applications in single device, a solution can be brought to
existence where a user have to download a single application
which can be severed a replacement for multiple application in
a single device.

 The application can create access to multiple application
and hence prevents the user from downloading multiple
applications.

 Due to the fact that it can create access to multiple
applications, It reduces the memory consumption of the
device due to the presence of multiple application
present in the device. As we know that in today’s world
the memory management of the device is an important
factor of every application. Hence with the help of this
application the user can preserve a lot of space which
could have been occupied due to the presence of
multiple application.

 The presence of a greater number of applications also
increase the pressure on the RAM which makes the
device slower and sometimes even causes lag in the
device. Since the application provides access to multiple
application hence it will prevent the user to download
application separately. Hence this will reduce the
pressure on RAM as well as prevents the device from
lagging.

 The access to every application is arranged in a well-
organized manner such that the user will face no
difficulty in finding the desired application as well as
can access the application easily.

 Apart from providing access to application, the designed
application also provides access to then website of the
corresponding application in option with the help of
which the user can also check the website of the
particular application based on their choice.

Application UI

This module basically consist of the interface of the application
with which the user interacts

Figure 2 Application Modules in Flow diagram

International Journal of Recent Scientific Research Vol. 9, Issue, 9(E), pp. 28987-28991, September, 2018

28991 | P a g e

Form View-: This format basically contains a form with a new
user interacts for new registration and gives their details as
input or a registered user gives their id and passwords as input.

List View-: This view format basically consists of the list of
different kinds of sections like shopping section, groceries
section or the taxi booking section. Etc.

Grid view-: This view format consist a grid view of all the
application present in a particular section like the ola, uber etc.
are present in the taxi booking section etc.

Search Section-:In this section we provide the user a direct
search access where he can directly search for the application
he is looking for.

CONCLUSION

The Android apps require the inter collaboration of the
smartphones hardware along with kernel support. These apps
leave the room for more improvement for further enhancement
there by easing human effort and advancing in technology.[3]
With proper management of setting in the background process
helps in bringing down effective application loading time. This
idea is very helpful to access patterns that do not change
frequently. If the same cluster of applications will be reused
then definitely it will help in better loading times of
applications hence improving the overall experience of a
smartphone user.

References

1. Joon-Myung Kang, Joon-Myung Kang, James Won-Ki
Hong (December 2011) “Personalized Battery Lifetime
Prediction for Mobile Devices Based on usage pattern”,
Journal of computing science and engineering, vol 5, no
4.

2. Myungsun Kim, Jinkyu Koo, +1 author James R. Geraci,
“Memory Management Scheme to Improve Utilization
Efficiency and Provide Fast Contiguous Allocation
without a Statically Reserved Area”, Published 2015 in
ACM Trans. Design Autom. Electr. Syst, DOI:
10.1145/2770871

3. Kumar Vimal, Aditya Trivedi,” A Memory Management
Scheme for Enhancing Performance of Applications on
Android”, 2015 IEEE Recent Advances in Intelligent
Computational Systems (RAICS) | 10-12 December
2015

4. Paul, K., &Kundu, T. K. (2010). Android on Mobile
Devices ”Android on mobile device: An Energy
Perspective”,. 2010 10th IEEE International Conference
on Computer and Information Technology.
doi:10.1109/cit.2010.416

5. Kim, H., Lee, M., Han, W., Lee, K., & Shin, “Aciom:
Application Characteristics-aware Disk and Network I/O
Management on Android Platform”. Proceedings of the
Ninth ACM International Conference on Embedded
Software - EMSOFT ’11.

Figure 3 Model Representation of Application UI

How to cite this article:

Vishal Gupt et al.2018, Android Application Management and Enchancement. Int J Recent Sci Res. 9(9), pp. 28987-28991.
DOI: http://dx.doi.org/10.24327/ijrsr.2018.0909.2774
