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In this paper we discuss the eigenvalue problems which are useful for solving the differential 
equations to a general class of boundary value problems that share as common set of properties. The 
Sturm-Liouville Problems define a class of eigenvalue problems, which include many special cases. 
We also discuss the relation between Strum-Liouville problems and self adjoint problems. 
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INTRODUCTION 
 

The boundary value problems are commonly   associated with 
the name of Sturm and Liouville. They consists of a differential 
equation of the form  
 

  [�(�)� ′]′ − �(�)� + ��(�)� = 0                                 (1.1) 
 

on the interval 0 < � < 1, together with the boundary 
conditions 
 

���(0)+ ���
′(0) = 0,���(1)+ ���

′(1) = 0	              (1.2) 
 

at the end points. It is often convenient to introduce the linear 
homogeneous differential operator L defined by 
 

 �[�]= − [�(�)� ′]′ + �(�)�.                                              (1.3) 
 

Then the differential equation (1.1) can be written as  
 

�[�]= ��(�)� = 0.                                                            (1.4) 
 

We assume that the functions  �,�′,� and r are continuous on 
the interval 0 ≤ � ≤ 1 and, further, that �(�) > 0 and �(�) >
0 at all points in  0 ≤ � ≤ 1. These assumptions are necessary 
to render the theory as simple as possible while retaining 
considerable generality. It turns out that these conditions are 
satisfied in many significant problems in mathematical physics. 
For example, the equation � ′′ + �� = 0 is of the form (1.1) 
with �(�) = 1,�(�) = 0, and  �(�) = 1. The boundary 

conditions (1.2) are said to be separated; that is, each involves 
only one of the boundary points. These are the most general 
separated boundary conditions that are possible for second 
order differential equation. The boundary condition (1.2) is said 
to be periodic, if 
 

 �(− �)= 0 = �(�), �′(− �) = 0 = �′(�)	.                          
 

Properties of Sturm-Liouville BVP 
 

Before proceeding to establish some of the properties of the 
Sturm-Liouville problem (1.1), (1.2), it is necessary to derive 
an identity, known as Lagrange’s identity, which is basic to the 
study of linear boundary value problems. Let u and v be 
functions having continuous second derivatives on the interval 
0 ≤ � ≤ 1. Then 
 

� �[�]��� = � [− (��′)′� + ���]��
�

�

.
�

�

 

 

Integrating the first term on the right side twice by parts, we 
obtain 
 

� �[�]��� = − �(�)�′(�)�(�)�
1

0
+ �(�)�′(�)�(�)�

1

0

�

�

+ � [− �(��′)′ + ���]��
�

�

. 
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                        = − �(�)[�′(�)�(�)− �′(�)�(�)]| �
�
+

∫ ��[�]��
�

�
. 

Hence, on transposing the integral on the right side, we have 
 

∫ ��[�]� − ��[�]��� =
�

�
− �(�)[�′(�)�(�)− �′(�)�(�)]| �

�
                                   

(2.1) 
 
which is Lagrange’s identity. 
 
Now let us suppose that the function u and v in (2.1) also 
satisfy the boundary conditions (1.2). Then, if we assume that 
�� ≠ 0 and �� ≠ 0, the right side of (2.1) becomes 
 

− �(�)[�′(�)�(�)− �′(�)�(�)]| �
�

=   	− �(1)[�′(1)�(1)−

�′(1)�(1)] 
                                                                  + �(0)[�′(0)�(0)−
�′(0)�(0)] 

                                                         = − �(1)[−
��

��
�(1)�(1)+

��

��
�(1)�(1)] 

                                                                

+ �(0)[−
��

��
�(0)�(0)+

��

��
�(0)�(0)] 

                                                         = 0. 
 
The same result holds if either ��  or �� is zero. Thus, if the 
differential operator L is defined by (1.3), and if the functions u 
and v satisfy the boundary conditions (1.2), Lagrange’s identity 
reduces to  

  ∫ ��[�]� − ��[�]��� =
�

�
0                                             (2.2) 

 

Let us now write (2.2) in slightly different way. We introduce 
the inner product (�,�) of two real-valued functions u and v on 
the interval 0 ≤ � ≤ 1, by 
 

(�,�) = ∫ �(�)�(�)��.
�

�
                                                   (2.3)  

 

In this notation (2.2) becomes  
 

(�[�],�)− (�,�[�]) = 0.                                                  (2.4) 
 

In proving Theorem 2.1 below  it is necessary to deal with 
complex-valued functions. We define the inner product of two 
complex-valued functions on the interval  0 ≤ � ≤ 1 as 
 

(�,�) = ∫ �(�)�(�)��������
�

�
                                                     (2.5) 

 
where �̅ is the complex conjugate of v.  Clearly, (2.5) coincides 
with (2.3) if u and v are real. It is important to know that (2.4) 
remains valid under the stated conditions if u and v are 
complex valued functions and if the inner product (2.5) is used. 

To see this, one can start with the quantity  ∫ �[�]�̅��
�

�
 and 

retrace the steps leading to (2.2), making use of the fact that 
�(�),�(�),��,��,��,�� are all real quantities. 
 

We now consider some of implications of (2.4) for the Sturm-
Liouville boundary value problem (1.1), (1.2). We assume 
without proof that this problem actually has eigenvalues and 
eigenfunctions. If the Sturm-Liouville problem (1.1), (1.2) has 
a non-zero solution �(�) on the interval 0 ≤ � ≤ 1, then we 
say  � is an eigenvalues and  that �(�) is corresponding 
eigenfunction of Sturm-Liouville problem (1.1), (1.2). An 

eigenvalues of the Sturm-Liouville problem (1.1), (1.2) are said 
to be simple if to each eigenvalue there correspond only one 
linearly independent eigenfunction, otherwise eigenvalue is 
called multiple eigenvalue. 
 
In Theorem 2.1 to 2.4 below, we state several of their important 
properties. Each property is illustrated by the basic Sturm-
Liouville problem 
 
� ′′ + �� = 0,�(0) = 0,�(1) = 0,                (2.6) 
 
whose eigenvalues are ��	= 	���� , with the corresponding 
eigenfunctions                 ��(�) = sin ���.  
 
Theorem 2.1 All the eigenvalues of the Sturm-Liouville 
problem (1.1), (1.2) are real. 
 
Proof: To prove this theorem, let us suppose that � is a positive 
complex eigenvalue of the problem (1.1), (1.2) and that  � is a 
corresponding eigenfunction, also possibly complex-valued. 
Let us write � = � + �� and  �(�) = �(�)+ ��(�),	 where 
�,�,�(�) and  �(�) are real. Then, if we let  � = � and also 
� = � in (2.4), we have  
 
(�[�],�) = (�,�[�]).                                                     (2.7) 
 
However, we know that �[�]= ��� , so (2.7) becomes 
 
(���,�) = (�,���).                                                       (2.8) 
 
Writing out (2.8) in full, using the definition (2.5) of the inner 
product, we obtain 
                                 

∫ ��(�)�(�)�(�)�������� =
�

�
∫ �(�)�̅�(�)	��������(�)��������

�

�
.                         

(2.9) The weight function  �: [0,1]→ �, such that �(�) > 0, 
(2.9) reduces to  

                                               (� − �̅)∫ �(�)�(�)�(�)�������� =
�

�
0, 

                                       (� − �̅)∫ �(�)[��(�)+
�

�

��(�)]�� = 0.                              (2.10) 
 
The integrand in (2.10) is non-negative and not identically 
zero. Since the integrand is also continuous, it follows that the 
integrand is positive. Therefore, the factor � − �̅ = 2�� must be 
zero. Hence � = 0 and � is real, so the theorem is proved. 
An important consequence of Theorem 2.1 is that in finding 
eigenvalues and eigenfunctions. It is also possible to show that 
the eigenfunctions of the boundary value problem (1.1), (1.2) 
are real. 
 
Theorem 2.2 (Orthogonality Property) If ��  and  ��  are two 
eigenfunctions of the Sturm-Liouville problem (1.1), (1.2) 
corresponding to eigenvalues �� and ��, respectively, and if  

� �
≠ �� , then 

∫ �(�)��(�)��(�)�� =
�

�
0.                                              (2.11) 

 

Proof:  We note that  ��  and  ��  satisfy the differential 
equations 
�	[��]= �����                                                                  (2.12) 
and 
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  �	[��]= ����� ,                                                             (2.13) 
 

respectively. If we let � = ��,� = �� , and substitute for �[�] 
and  �[�] in (2.4), we obtain 
 

(�����, ��)− (��, �����) = 0, 
 

 (2.5) implies that, 
 

�� ∫ �(�)��(�)��(�)����������
�

�
− �� ∫ �(�)��������(�)��(�)����������

�

�
= 0. 

Because ��, �(�) and  ��(�) are real, this equation becomes 

                                                 (	�� − ��)∫ �(�)��(�)��(�)�� =
�

�
0. 

 

Since by hypothesis �� ≠ ��, it follows that  ��  and  ��  must 
satisfy (2.11), and the theorem is proved. 
 

Theorem 2.3 The eigenvalues of the Sturm-Liouville problem 
(1.1), (1.2) are all simple. Further, the eigenvalues form an 
infinite sequence, and can be ordered according to increasing 
magnitude so that  
 

	�� < 		��	< ⋯		��	< ⋯. 
Moreover,  	��	→ 	∞ as � → 	∞. 
 

Again we note that all the properties stated in Theorem 2.1 to 
2.3 are exemplified by eigenvalues ��	= 	����  and 
eigenfunctions ��(�) = sin ��� of the example (2.6). Clearly, 
the eigenvalues are real. The eigenfunctions satisfy the 
orthogonality relation 

                              ∫ ��(�)��(�)	��
�

�
= 	∫ sin ���	

�

�
sin ��� 	�� = 0,

� ≠ �,      (2.15) 
 

which establish by direct integration.  Further, the eigenvalues 
can be ordered so that   
	�� < 		��	< ⋯		��	< ⋯, and 	��	→ 	∞ as � → 	∞. Finally, to 
each eigenvalue there corresponds a single linearly independent 
eigenfunction. 
 

We will now assume that the eigenvalues of Sturm-Liouville 
problem (1.1), (1.2) are ordered as indicated in Theorem 2.3. 
Associated with the eigenvalue  	��	 is a corresponding 
eigenfunction ��, determined up to a multiplicative constant. It 
is often convenient to choose the arbitrary constant multiplying 
each eigenfunction so as to satisfy the condition  
 

∫ �(�)	��
�(�)�� = 1,

�

�
			� = 1,2,…                                 (2.16) 

 

Equation (2.16) is called a normalization condition, and 
eigenfunctions satisfying this condition are said to be 
normalized. Indeed, in this case, the eigenfunctions are said to 
form an orthonormal set (with respect to the weight function r) 
since they already satisfy the orthogonality relation (2.11). It is 
useful to combine (2.11) and (2.16) into a single equation. To 
this end we introduce the symbol ���, known as the Kronecker 
delta and define by 
 

   ��� = �
0,��	� ≠ �,
1	��	� = �.

�                                                       (2.17) 

 

Making use of the Kronecker delta, we can write (2.11) and 
(2.16) as  

∫ �(�)��(�)��(�)�� =
�

�
���.                                       (2.18) 

We now turn to the question of expressing a given function f as 
a series of eigenfunctions of the Sturm-Liouville problem (1.1). 
(1.2). 

Now suppose that a given function f is continuous and has 
piecewise continuous derivatives on 0 ≤ � ≤ 1, and satisfying 
the boundary conditions �(0) = �(1) = 0, can be expressed in 
an infinite series of eigenfunctions of Sturm-Liouville problem 
(1.1), (1.2). If this can be done, then we have 
 

  �(�) = ∑ ����(�)∞
��� ,                                                 (2.19) 

 

where the functions  ��(�) satisfy (1.1), (1.2), and the 
orthogonality condition (2.18). To compute the coefficient in 
the series (2.19), we multiply equation (2.19) by �(�)��(�), 
where m is a fixed positive integer, and integrate from � = 0 to 
� = 1. Assuming that the series can be integrated term by term 
we obtain 
                                     

∫ �(�)�(�)��(�)�� =
�

�
∑ ��

∞
��� ∫ �(�)��(�)��(�)��

�

�
 

                                     = ∑ �����
∞
��� .                              (2.20)                               

 

Hence, using the definition of ���, we have 
                                   

�� = ∫ �(�)�(�)��(�)�� =
�

�
(�, ���),� = 1,2,… .    (2.21)                       

The coefficients in the series (2.19) have  thus been formally 
determined. 
 

Theorem 2.4 Let ��, ��,… ,��,…	 be the normalized 
eigenfunctions of the Sturm-Liuoville problem (1.1), (1.2): 
  

 [�(�)� ′]′ − �(�)� + ��(�)� = 0, 
  ���(0)+ ���

′(0) = 0,���(1)+ ���
′(1) = 0. 

 

Let f and f’ be piecewise continuous on  0 ≤ � ≤ 1. Then the 
series (2.19) whose coefficient  �� are given by (2.21) 

converges to 
[�(��)��(��)]

�
 at each point in the open interval 

0 < � < 1. 
 

If f satisfies further conditions, then a stronger conclusion can 
be established. Suppose that, in addition to the hypothesis of 
Theorem 2.4, the function f is continuous on 0 ≤ � ≤ 1. If 
�� = 0 in the first of equation (1.2) [so that	��(0) = 0], then 
assume that�(0) = 0. Similarly, if  �� = 0 in the second of 
equation (1.2), assume that�(1) = 0. Otherwise no boundary 
conditions need be prescribed for f. Then the series (2.19) 
converges to �(�) at each point in the closed interval 
 0 ≤ � ≤ 1 
 

Self-adjoint problems 
 

Let us consider the boundary value problem consisting of the 
differential equation 
 

�[�]= 	��(�)�, 0 < � < 1,                                             (3.1) 
 

Where 

    �[�]= ��(�)
���

��� + 	… + ��(�)
��

��
+ ��(�)�,                        

(3.2) and n linear homogeneous boundary conditions at the 
endpoints. If equation (2.4) is valid for every pair of 
sufficiently differentiable functions that satisfy the boundary 
conditions, then the given problem is said self-adjoint. It is 
important to observe that (2.4) involves restrictions on both the 
differential equation and boundary conditions. The differential 
operator L must be such that the same operator appears in both 
terms of (2.4) this require that L be of even order. Further, a 
second order operator must have the form (1.3); a fourth order 
operator must have the form 
 �[�]= [�(�)� ′′]′′ − [�(�)� ′]′ + �(�)�                               (3.3) 
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and higher order operators must have an analogous structure. In 
addition, the boundary conditions must be such as to eliminate 
the boundary terms that arise during the integration by parts 
used in deriving (2.4). For, example, in a second order problem 
this is true for separated boundary conditions (1.2) and also in 
certain other problem, one of which is given in Example 3.5. 
Let us suppose that we have a self-adjoint boundary value 
problem for (3.1) where �[�] is given by (3.3). We assume that 
p, q, r, and s are continuous on 0 ≤ � ≤ 1, and that derivatives 
of p and q indicated in (3.3) are also continuous. If in addition  
�(�) > 0 and �(�) > 0 for  0 ≤ � ≤ 1	then there is an infinite 
sequence of real eigenvalues tending to + ∞, the eigenfunctions 
are orthogonal with respect to the weight function r; that is,  
�: [0,1]→ �, such that �(�) > 0, for all� ∈ [�,�], and an 
arbitrary function can be expressed as a series of 
eigenfunctions. However, the eigenfunctions may not simple in 
these more general cases. 
 

Example 3.1 For � ∈ �, solve 
 

� ′′ + �� = 0,�(0) = 0,� ′(�) = 0.                                 (3.4) 
 

Solution:  
 

Case 1. Let � < 0.	Then � = − ��, where � is a real and non-
zero. The general solution of ODE in (3.4) is given by 
 

�(�) = ���� + �����.                                                       (3.5) 
 

This y satisfies boundary conditions in (3.4) if and only if 
� = � = 0. That is � ≡ 0. Therefore, there are no negative 
eigenvalues. 
 

Case 2. Let � = 0. In this case, it easily follows that trivial 
solution is the only solution of  
 

 � ′′ = 0,�(0) = 0,� ′(�) = 0                                              (3.6) 
 

Thus, 0 is not an eigenvalue.   
 

Case 3.  � > 0. Then � = ��, where � is a real and non-zero. 
The general solution of ODE in (3.4) is given by 
 

�(�) = � cos �� + �	sin ��                                          (3.7) 
 

This y satisfies boundary conditions in (3.4) if and only if 
� = 0 and � cos �� = 0. But  � cos �� = 0 if and only if, 
either � = 0 or cos �� = 0. The condition � = � = 0 means 
� ≡ 0. This does not yield any eigenvalue. If � ≠ 0, then 
� ≠ 0. Thus cos �� = 0 hold. This last equation has solution 

given by � =
����

�
,	for � = 0,±1,±2,…. Thus eigenvalues are 

given by 
 

  �� =
����

�
, � = 0,±1,±2,….                                         (3.8) 

 

And the corresponding eigenfunctions are given by  
 

 ��(�) = ���� �
����

�
�� ,� = 0,±1,±2,…. 

 
Note: All the eigenvalues are positive. The eigenfunctions 
corresponding to each eigenvalue form a one dimensional 
vector space and so the eigenfunctions are unique up to a 
constant multiple. 
 

Example 3.2 For � ∈ �, solve 
                                    � ′′ + �� = 0,�(0)− �(�) =
0,	� ′(0)− � ′(�) = 0.               (3.9) 

Solution: This is not a Sturm-Liouville boundary value 
problem. It is the mixed boundary condition unlike the 
separated boundary condition above.  
 
Case 1. Let � < 0.	Then � = − ��, where � is a real and non-
zero. In this case it is easily verified that trivial solution is the 
only solution of (3.9). 
 
Case 2. Let � = 0. In this case, it easily follows that solution of 
(3.9) is given by 
 
�(�) = � + ��.                                                          (3.10) 
 
This y satisfies boundary conditions in (3.9) if and only if 
� = 0.  Thus � remains arbitrary. Thus 0 is an eigenvalue with 
eigenfunction being any non-zero constant. Note that 
eigenvalue is simple. 
  
Case 3.  � > 0. Then � = ��, where � is a real and non-zero. 
The general solution of ODE in (3.9) is given by 
  
 �(�) = � cos �� + �	sin ��                                          (3.11) 
 
This y satisfies boundary conditions in (3.5) if and only if 

� sin �� + � (1 − cos ��) = 0, 
                                               � (1 − cos ��)− � sin �� = 0. 
This has non-trivial solution for the pair (�,�) iff  

                                                   �
sin ��							(1 − cos ��)

(1 − cos ��)								− sin ��
� =

0. 
That is cos �� = 1. This implies that � = ±2�,� ∈ �,	 and 
hence � = 4��,� ∈ �. Thus positive eigenvalues are given by 

�� = 4��,� ∈ � 
and the eigenfunctions corresponding to �� are given by 

��(�) = cos 2�� ,��(�) = sin 2��,� ∈ �. 
Note: All the eigenvalues non negative. There are two linearly 
independent eigenfunctions namely cos 2��  and  sin 2�� 
corresponding to each positive eigenvalue�� = 4�� . 
 
Example 3.3 Determine the normalized eigenfunction of  
   � ′′ + �� = 0,�(0) = 0,�(1) = 0.  
 
Solution:  The eigenvalues of this BVP are  
                                                      �� = ���� ,  � = 	1,2,…,  
and the corresponding eigenfunctions are 

��(�) = �����(���),	 
respectively. In this case the weight function is �(�) = 1. To 
satisfy equation (2.16) we must choose �� so that 

  ∫ (�����(���))��� = 1,
�

�
			� = 1,2,…	.                       (3.14)                           

Since 

��
� � �������	��

�

�

= ��
� � �

1

2
−

1

2
cos 2���� ��

�

�

 

                                           =
�

�
��

�,� = 1,2,….              (3.14) 

is satisfied if �� = √2,� = 1,2,…. Hence the normalized 
eigenfunctions of the given boundary value problem are 
 

��(�) = √2���(���),� = 1,2,…. 
 

Example 3.4 Determine the normalized eigenfunctions of the 
boundary value problem 
  



Pandit U. Chopade,. Sturm-Liouville Boundary Value Problems and Their Properties 

 

31023 | P a g e  

  � ′′ + �� = 0,�(0) = 0,� ′(1)+ �(1) = 0. 
 

Solution: We observe that the eigenvalues of given BVP,  �� 
satisfy the equation 
 

sin ��� + ���		������ = 0,� = 1,2,… ,                      (3.15)                          
 

and that corresponding eigenfunctions are  
 

 ��(�) = ���������	��,� = 1,2,…                               (3.16) 
 

where �� is arbitrary. We determine �� from the normalized 
condition (2.16). Since �(�) = 1 in this problem, we 

have∫ ��
�(�)�� =

�

�
��

� ∫ ��������	��	��
�

�
 

                                                               = ��
� ∫ �

�

�
−

�

�
�

�
cos 2���	�� �� 

                                                              = ��
� �

�

�
−

��������	��

����	
� | �

�
 

                                                              = ��
� �

����	����������

����	
� 

                                                              

= ��
� �

���	�������	.��� ���	

����	
� 

                                                              = ��
� �

������ ���	

�
�, 

where in the last step we have used (3.15). Hence, to normalize 
the eigenfunctions.	��, we must choose 

  �� = (
�

������ ���	
)

�

�	,� = 1,2,…. 
 

The normalized eigenfunctions of the given BVP are 
 

   ��(�) =
√�	������	�

(������ ���	)
�
�

; � = 1,2,…. 

 

We turn now to the relation between Sturm-Liouville problem 
and Fourier series. 
 

Example 3.5 Find the eigenvalues and eigenfunctions of the 
boundary value problem 
 

    � ′′ + �� = 0,                                                                (3.18) 
   	�(− �)− �(�) = 0,	� ′(− �)− � ′(�) = 0.                   (3.19)                                 
 

Solution: This is not Sturm-Liouville problem because the 
boundary conditions are not separated. The boundary 
conditions (3.19) are periodic. Nevertheless, it is 
straightforward to show that the problem (3.19), (3.20) is self-
adjoint. A simple calculation establishes that �� = 0 is an 
eigenvalues and that the corresponding eigenfunction is 
��(�) = 1. Further, there are additional eigenvalues  
 

 �� = (
�

�
)�,	�� = (

��

�
)�, . . . ,�� = (

��

�
)�,….    

 

To each of these non-zero eigenvalues there corresponds two 
linearly independent eigenfunctions; for example, 
corresponding to �� are the two eigenfunctions  

                                     ��(�) = cos
���

�
,��(�) =

sin
���

�
,� ∈ �. 

 
 
 
 
 

This illustrate that the eigenvalues may not be simple when the 
boundary conditions are not separated. Further, if we seek to 
expand a given function � of period 2� in a series of 
eigenfunctions of the problem (3.18), (3.19). we obtain the 
series 

�(�) =
��

2
+ �(�� cos

���

�
+ �� sin

���

�
	)

∞

���

 

which is the Fourier series for �. 
 

Eigenvalue Problem Summary 
 

The Dirichlet Problem 
 

� � ′′ + ��� = 0
�(0) = 0 = �(�)

� ⇒ �
�� =

��

�
, � = 1,2,…

��(�)= sin	(
��

�
�)

� 

The Neumann Problem 
 

� � ′′ + ��� = 0
�′(0) = 0 = �′(�)

� ⇒ �
�� =

��

�
, � = 1,2,…

��(�) = cos	(
��

�
�)

� 

The Periodic Boundary Value Problem 
 

�
� ′′ + ��� = 0

�(− �) = 0 = �(�)

�′(− �) = 0 = �′(�)
�

⇒ �
�� =

��

�
, � = 1,2,…

��(�) ∈ �1,cos �
��

�
�� ,sin	(

��

�
�)�	

� 

 

Mixed Boundary Value Problem 
 

� � ′′ + ��� = 0
�(0) = 0 = �′(�)

� ⇒ �
�� =

(2� + 1)�

2�
, � = 1,2,…

��(�) = sin	(
(2� + 1)��

2�
)

� 

and 

� � ′′ + ��� = 0
�′(0) = 0 = �(�)

� ⇒ �
�� =

(2� + 1)�

2�
, � = 1,2,…

��(�) = cos	(
(2� + 1)��

2�
)

� 
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