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In this paper, we attempt to obtain criteria for stability of the trivial solution of the first order 
difference equation applying various conditions in terms of  Lyapunov function. 
  
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 

 
 

 
 

 

 
 

 
 

 
 

 
 
 
 
 
 

 
 
 
 
 
  
 

 
 

INTRODUCTION 
 

In the recent years the theory and applications of difference 
equations are found to be more useful in the engineering field. 
Agarwal [1], Kelley and Peterson [2] developed the theory of 
difference equations and difference inequalities. Some 
differential and integral inequalities are given in [3]. K. L. 
Bondar contributed some difference inequalities, solutions of 
summation equations and some summation inequalities in [4, 5, 
6]. Some comparison results in difference equations are given 
by A. B. Jadhav, P. U. Chopade and K. L. Bondar in [7]. Some 
stability criterion of solutions for the first order difference 
equation applying various conditions is given by P. U. Chopade 
in [8]. In this paper, we attempt to obtain criteria for stability of 
the trivial solution applying various conditions in terms of 
Lyapunov function of the first order difference equation  
 

               	∆�(�) = �(�, �),													�(��) = ��,						�� ≥ 0,        
                                       

where	� ∈ �[�× ��,��], �= ���,�� + 1,�� + 2, ...,�� + ��,

�� ∈ ��, the set of all nonnegative real numbers,  ��  being the 

set 
 

																																														�� = {� ∈ �,|�|< �}.  
 

Definitions and Preliminary Notes 
 

Let �(�,��,��) be any solution of the difference equation 
 

																						∆�(�) = �(�,�),					�(��) = ��,						�� ≥ 0.      (2.1) 
                                

Assume that �(�,0) = 0,� ∈ �, so that � = 0 is a trivial 
solution of (2.1) through (��,0). We list a few definitions 
concerning the stability of the trivial solution. 
 

Definition 2.1 For � ∈ �[�× �,��], we define the function 
 

	∆��(�,�) = sup�∈�[��� + 1,� + �(�,�)� − �(�,�)]     (2.2)                                  

for (�,�) ∈ �× � . 
 

Definition 2.2 The trivial solution � = 0 of (2.1) is 
 

(S1) equistable if, for each � > 0, �� ∈ �, there exists a positive 
function � = �(��, �) that is continuous in �� for each � such 
that the inequality 
 

|��|≤ � 
 

implies 
 

                         |	�(�,��,��)|< �,					� ≥ ��; 
(S2) uniformly stable if the � in (S1) is independent of ��; 
(S3) quasi-equi asymptotically stable if, for each � > 0, 
�� ∈ �, there exist positive numbers  
�� = ��(��) and � = �(��, �) such that,  for � ≥ �� + �and 
|��|≤ ��,	 
 
                                |	�(�,��,��)|< �; 
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(S4) quasi uniformly asymptotically stable if the numbers 
�� and � in (S3) are independent of  ��; 
 

(S5) equi-asymptotically stable if (S1) and (S3) hold 
simultaneously; 
                                                                             

(S6) uniformly asymptotically stable if (S2) and (S4) hold 
together. 
 

It is convenient to introduce certain classes of 
monotone functions. 
 

Definition 2.3 A function � (�) is said to belong to the class K 
if � ∈ � 	[[0,�),��], � (0) = 0, and � (�) is strictly monotone 
increasing in �. 
 

Definition 2.4 A function �(�,�) with �(�,0) ≡ 0 is said to be 
positive definite if there exists a function � (�) ∈ �  such that 
the relation 

�(�,�)≥ 	� (|�|) 
 

is satisfied for (�, �) ∈ �× �� . 
 

Definition 2.5  A function �(�,�) ≥ 	0 is said to be decrescent 
if a function � (�) ∈ �  exists such that 
 

                       �(�,�) ≤ 	� (|�|),	(�, �) ∈ �× �� . 
 

Definition 2.6 A function � ∈ �[�× ��,��] is said to be 

locally Lipschitzian in �, if for each (�,�) ∈ �× ��  there exists 

a constant � > 0 and �� > 0 such that |� − ��|< ��, implies 
 

                     |�(�,�)− �(�,��)|≤ �|� − ��|.   
 

Definition 2.7 Let �(�) be any solution of (2.1) on J. Then �(�) 
is said to be maximal solution of (2.1), if every solution	�(�) of 
(2.1) existing on J, the inequality �(�) ≤ �(�) holds for � ∈ �.  
 

Definition 2.8 The function �(�,�) is said to be mildly 
unbounded if, for every � > 0,�(�,�) → ∞	 as |�|→ ∞ 
uniformly for � ∈ [0,�]. 
 

Definition 2.9 The function �(�,�) is said to possess a mixed 
quasi-monotone property if the following conditions hold: 
 

(i) ��(�,�) is nondecreasing in ��,�= 1,2,… ,�,�≠

�, and nonincreasing in �� . 
 

(ii) ��(�,�) is nonincreasing in ��,	and 

nondecreasing in ��,  �= � + 1,� + 2,… ,�,			�≠

�. 
 

Evidently, the particular cases � = � and  � = 0 in the 
mixed quasi-monotone property correspond to quasi-monotone 
nondecreasing and quasi-monotone nonincreasing properties of 
the function �(�,�) respectively. Furthermore, �(�,�) is said 
to possess mixed monotone property if, in conditions (i) and 
(ii), �≠ �,�≠ � are not demanded. 
 
Theorem 2.1 [3] Let  � ∈ [�,��], where E is an open (�,�)-
set in ����. Suppose that �  is a quasi-monotone nondecreasing 
in u. Let   [��, �� + �) be the largest interval of existence of the 
maximal solution  �(�) of  
 

																															∆�(�) = �(�, �),													�(��) = ��. 
 

Let 
 

� ∈ �[[��, �� + �), �
�], (�,� (�)) ∈ �, � ∈ [��, �� + �), 

and for a fixed derivative, the inequality 

																									∆� (�) ≤ ���, � (�)�                                   (2.3) 
 

 holds for  � ∈ [��, �� + �). Then 
 

                                  � (��) ≤ ��                                      (2.4) 
 implies 
              � (�) ≤ �(�),	 � ∈ [��, �� + �).                           (2.5) 
 

Remark: If, in Theorem 2.1, the inequalities (2.3) and (2.4) are 
reversed, then the conclusion  (2.5) is to be replaced by 
 

                      � (�) ≥ �(�),	 � ∈ [��, �� + �), 
 

where  �(�) is the minimum solution of (2.1) 
 

Main Comparison Theorem 
 

The following theorem plays an important role  whenever we 
use Lyapunov functions. 
 

Theorem 3.1 Let  � ∈ �[�× ��,��] and  �(�,�) be locally 

Lipschitzian in x. Assume that the function ∆��(�,�) defined 
by (2.2) satisfies the inequality 
 

											∆��(�,�)≤ ���,�(�,�)�, (�,�) ∈ �× �� ,              (3.1)  
                             

where � ∈ �[�× ��, � 	],  and the function �(�,�) is quasi-
monotone nondecreasing in u, for each fixed � ∈ �. Let 
�(�,��,��) be the maximal solution of the difference equation  
 

											∆� = �(�,�),�(��) = �� ≥ 0, �� ≥ 0,                    (3.2)  
                       

existing to the right of  ��.  If  �(�) = �(�,��,��) is any 
solution of (2.1) such that  
 

                     �(��,��) ≤ ��,                                                (3.3) 
 

then, as  far as  �(�) exists to the right of  ��, we have 
 

                �(�,�(�,��,��)) ≤ �(�,��,��)                             (3.4) 
 

Proof:  Let �(�,��,��) be any solution of (2.1) such that 
�(��,��) ≤ ��. Define the function � (�) by 
 

                                    � (�) = �(�,�(�,��,��)). 
 

Then, using the hypothesis that �(�,�) satisfies Lipschitz’s 
condition in x, we obtain, the inequality 
 

� (� + 1)− � (�) ≤ � ��(� + 1)− �(�)− ���,�(�)�� 

+ � �� + 1,�(�)+ ���,�(�)��− ���,�(�)�, 
 

where �  is the local Lipschitz constant. This, together with 
(2.1) and (3.1), implies the inequality 
                                   ∆�� (�) ≤ �(�,� (�)). 
 

Moreover, � (��) ≤ ��. Hence by Theorem 2.1, we have                                                
																																										� (�) ≤ �(�,��,��) 
 

as far as  �(�) exists to the right of  ��, proving the desired 
relation (3.4). 
 

We can now state a global existence theorem. 
 

Theorem 3.2 Assume that � ∈ �[�× �,��],�(�,�) is locally 
Lipschitzian in x and ∑ ��(�,�)

�
���  is mildly unbounded. 

Suppose that  � ∈ �[�× �,��],�(�,�) is quasi-monotonic 
nondecreasing in u for each fixed � ∈ �,  and �(�,��,��) is the 
maximal solution of (3.2) existing for � ≥ ��. If � ∈ �[�×
�,�] and  

                                        ∆��(�,�) ≤ ���,�(�,�)�,(�,�) ∈ �× �, 
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then every solution 
                                  �(�) = �(�,��,��) 
 

of (2.1) exists in the future and (3.3) implies (3.4) for all � ≥
��. 
 

On the basis of Theorem 2.1 and the remark that follows, we 
can prove the following: 
 

Theorem 3.3 Let � ∈ �[�× ��,��] and �(�,�) be locally 

Lipschitizian in x. Suppose that 
��,	�� 	 ∈ �[�× ��,�],��(�,�),��(�,�) possess quasi-
monotone nondecreasing property in u for each � ∈ �, and, for  
 

(�,�) ∈ �× �� , 
 

                   ��	��,�(�,�)� ≤ ∆
��(�,�) ≤ ��	��,�(�,�)�. 

 
 

Let �(�,��,��	), �(�,��,��	) be the maximal, minimal solutions 
of  

∆� = ��(�,�), �(��) = ��,	 
 
 

                            ∆� = ��(�,�),				�(��) = ��, 
 
 

respectively such that 
 
 

                                   �� ≤ 	�(��,��) ≤ ��. 
 
 

Then, as far as  
�(�) = �(�,��,��) 

 
 

exists to the right of ��, we have  
 
 

                 �(�,��,��	) ≤ �(�,�(�)) ≤ �(�,��,��	), 
 
 

where �(�) is any solution of (2.1). 
 
 

Asymptotic Stability 
 

An approach that is extremely fruitful in proving asymptotic 
stability is to modify Lyapunov’s original theorem without 
demanding  ∆��(�,�) to be negative definite. The theorem that 
follows takes care of the general case of �(�,�) and requires 
two Lyapunov functions. 
 

Theorem 4.1 Suppose that the following conditions hold: 
 

(i) � ∈ ���× ��,���,�(�,0) = 0, and �(�,�) is  

bounded on  �× �� . 
 

(ii) ��	 ∈ ���× ��,���, ��(�,�) is positive definite,  

decrescent, locally Lipschitzian in x, and  
 

                        ∆���(�,�) ≤ � (�) ≤ 0,			(�,�) ∈ �× �� , 
 

where � (�) is continuous for � ∈ �� . 
 

(iii) ��	 ∈ ���× ��,��� and  ��(�,�) is bounded on 

�× ��  and is locally Lipschitzian in x. Furthermore, given any 

number, � ,  0 < � < �, there exist positive numbers 
                             � = �(�)> 0,� = �(�) > 0,� < � ,  
 
 such that  
 

    ∆���(�,�)> �, for � < |�|< � and �(�,�) < �,� ≥ 0,	 
 

where � = [� ∈ �� ∶� (�) = 0] and �(�,�) is the distance 

between the point x and the set E. Then, the trivial solution of 
(2.1) is uniformly asymptotically stable. 
 

Proof: Let � > 0 and �� ∈ � be given. Since ��(�,�)  is 
positive definite and decrescent, there exists functions �,� ∈ �  
such that 
 

          �(|�|) ≤ ��(�,�) ≤ �(|�|),			(�,�) ∈ �× �� .           (4.1)  
          

We choose � = �(�) so that 
 

                               �(�)> �(�).                                        (4.2) 
 

Then, we can conclude that the trivial solution of (2.1) is 
uniformly stable. 
 

Let us now fix � = � and define �� = �(�). Let 0 < � <
�,�� ∈ �, and define � = �(�) be the same � obtained in (4.2) 
for uniform stability. Assume that |�|< ��. To prove uniform 
asymptotic stability of the solution � = 0, it is enough to show 
that there exists a � = �(�) such that, for some �∗ ∈ [��,�� +
�], we have 
 

                                       |�(�∗,��,��)|< �. 
 

This we achieve in a number of stages: 
 

(a) If �[�(��),�(��)	]> � > 0,�� > ��, then 

                            � ≤ ��
�
�(�� − ��),                                (4.3) 

 

where 
 

                     |�(�,�)|≤ �,(�,�) ∈ �× �� . 
 

For, consider 

|��(��)− ��(��)|≤ � |∆��(�)|

����

��

 

                                                                 

≤ ∑ |��(�,�(�))|
����
��

,(	�= 1,2,… ,�), 

 ≤ �(�� − ��),	          
and therefore 
 
 � < 	�[�(��),�(��)	]= {[��(��)− ��(��)]

� + [��(��)−

��(��)]
� + ⋯ + [��(��)− ��(��)]

�}
�

�				 

     ≤ ��
�
�(�� − ��). 

 

(b) By assumption (iii), given � = �(�),0 < � < �, there  
exist  � = �(�),� = �(�),� < �  such that 

 

														∆��(�,�)> �, � < |�|< �, �(�,�) < �, � ≥ 0. 
 

Let us consider the set 
 

																	� = �� ∈ �� ∶� < |�|< �,�(�,�) < ��, 

 
and let 
 
																																						���|�|� �,��� ��(�,�) = �. 

 
Assume that, at � = ��, �(��) = �(��,��,��) ∈ �. Then, for  
� > ��, we have, letting                                                                            
� (�) = ��(�,�(�)), 
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																																																				∆�����,�(�)� > �, 
 

because of condition (iii) and the fact that ��(�,�) satisfies a 
Lipschitz condition in x locally. Thus, 
 

                                     � (�)− � (��) = ∑ ∆�� (�)���
��

, 
 

and hence 

� (�)+ � (��) ≥ �∆�� (�)

���

��

≥ �∆�����,�(�)� > �(� − ��)

���

��

 

 

as long as �(�) remains in U. This inequality can 

simultaneously be realized with � (�) ≤ � only if � < �� +
��

�
. 

It therefore follows that there exists a ��,�� < �� ≤ �� +
��

�
		such that �(��) is on the boundary of the set U. In other 

words, �(�) cannot stay permanently in the set U. 
 

(c) Consider the sequence {��} such that 
 

                       �� = �� + �
��

�
,(� = 0,1,2,… ). 

 

Set �(�) = ����,�(�)�. Then, by assumption  (ii), we have 
 

                              ∆��(�) ≤ ∆�����,�(�)� ≤ 0. 
 

We let 
 

                      � = inf[|� (�)|, � < |�|< �, �(�,�)≥
�

�
	], 

 

and �� =
��

���
�
�

. Suppose that �(�) is such that, for �� ≤ � ≤

����, � < |�|< �. If for �� ≤ � ≤ ����, we have � < |�|< � 

and �(�,�) ≥
�

�
, then, using assumption (ii) together with the 

definition of the set E, we obtain 

	�(����)− �(��) = � ∆��(�)

������

��

 

                                                                                                        ≤ ∑ ∆�����,�(�)�
������
��

 

                                                                                                        ≤ ∑ ∆�����,�(�)�
����
��

 

                                                      + ∑ ∆�����,�(�)�
������
������

 

                                                    ≤ − �(���� − ��) 

                                                    = − �
��

�
.                      (4.4) 

 

On the other hand, if it happens that,  for  �� ≤ �� ≤ ����,	 
 

                           � < |�	(��)|< �,			 �(�(��),�) ≥
�

�
, 

 

then there exists a ��,  �� < �� ≤ �� +
��

�
 such that 

�[�(��),�]= �, in the view of (b). It follows that there also 
exists a ��, �� ≤ �� < ��  satisfying 
 

                                              �(�(��),�) =
�

�
. 

 

These considerations lead  to �(�(��),�(��)) ≥
�

�
, and hence 

we obtain, because of (a), 

                                            
�

�
≤ ��

�

�(�� − ��), 
 

which implies 
 

                       
�

���
�
�

≤ (�� − ��) ≤
��

�
.                               (4.5) 

 

Moreover,  

                                          �(��)− �(��) ≤ ∑ ∆�����,�(�)�
����
��

 

																													+ 			� ∆�����,�(�)�

����

��

 

                                              ≤ − �(�� − ��) 

                                              =
���

���
�
�

  

                                              = − ��. 
 

Since �(�) is nonincreasing function, we have 
 

                �(����) ≤ �(��) ≤ �(��)− �� ≤ �(��)− ��. 
 

Also, on the basis of (4.5), we obtain from (4.4) that 
 

                             �(����) ≤ �(��)− ��. 
 

Thus, in any case 
 

                  �������, �(����)� ≤ �����, �(��)� − ��. 
 

Choose an integer �∗ such that ���
∗ > �(��) and  � = �(�)=

4�∗
�

�(�)
. Assume that, for 

 

                 �� ≤ � ≤ �� + �,  |�(�,��,��)|≥ �. 
 

It then results from the preceding considerations that  
 

����� + �,�(�� + �)� ≤ ��(��,��)− ���
∗ 

                                     ≤ �(��)− ���
∗ 

                                     ≤ 0, 
 

which is incompatible with the positive definiteness of  
��(�,�). Thus, there exists a  �∗ ∈ [��,�� + �]	 satisfying 
                                   |�(�∗,��,��)|< � 
and the proof is complete. 
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