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ARTICLE INFO   ABSTRACT  

 

 

 

Gully erosion presents a significant threat to the environment, putting agriculture, wildlife 

habitats, human safety, infrastructure, and soil health at risk. Mapping areas vulnerable to 

gully erosion accurately demands selecting the right machine learning model, given the varied 

environmental factors influencing gully formation. In this study, we utilized machine learning 

algorithms based on extreme gradient boosting (XGB) to craft a highly precise gully erosion 

susceptibility map (GESM) for the Sita Nala small watershed, a tributary located on the right 

bank of the Subarnarekha River in West Bengal, India. Our investigation involved an in-depth 

analysis of gully erosion mapping with twenty-four variables and scrutiny of a dataset 

comprising 200 sample points, equally representing gullies and non-gullies. To assess 

multicollinearity, we utilized Information Gain Ratio (IGR) and Variance Inflation Factors 

(VIF) tests. The results revealed that drainage density (0.77), elevation (0.74), 

geomorphology (0.72), Land Use/Land Cover (LULC) (0.72), and Normalized Difference 

Vegetation Index (NDVI) (0.68) are the most critical factors influencing GESM. Employing a 

quantile classification approach, we generated three distinct categories of GESMs, ranging 

from areas with no gully erosion to those with moderate gully susceptibility area and high 

gully susceptibility area. Approximately 13.49% of the basin area was identified as being 

dominated by gully erosion, highlighting the urgent need for targeted management strategies 

in these regions. We evaluated the XGB model's performance on both training and testing 

data using various statistical tests, including Root Mean Square Error (RMSE), Kappa index, 

Mean Absolute Error (MAE), Accuracy (ACC), Receiver Operating Characteristic (ROC), 

and R². While both models produced satisfactory results, the XGB model exhibited strong 

performance, achieving an ROC value of 84.2%. However, the present study underscores that 

machine learning can accurately identify areas prone to gully erosion, providing valuable 

insights for policymakers to implement sustainable management practices. 
 

 

 

 

 
 

    

INTRODUCTION 
 

Gully erosion stands as a pressing environmental concern 

worldwide, affecting the functionality of various soil and land 

systems. Its presence serves as tangible evidence of historical 

instances of intense soil erosion, reflecting shifts in the 

environment influenced by interactions among 

geomorphological features, changes in land use, and extreme 

weather events [1]. Despite their relatively small footprint within 

catchment areas, gully channels significantly contribute to 

sediment discharge, exacerbating runoff and sediment 

connectivity across landscapes [2]. This increased connectivity 

amplifies the risk of flooding and sediment buildup in reservoirs, 

emphasizing the crucial necessity for environmental scientists, 

land managers, and policymakers to comprehend the intricate 

relationship between environmental change and land degradation 

[3]. 
 

The magnitude of gully erosion's impact is notable globally, with 

its accounting for a considerable 55% of land degradation 

worldwide, affecting approximately two billion hectares of land 

[4]. The repercussions extend to soil depletion, habitat 

destruction, water contamination, sediment accumulation in 

water bodies, and heightened vulnerability to flooding. 

Additionally, gully erosion has detrimental effects on agricultural 

productivity, infrastructure integrity, and public safety [5]. 
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Changes in land use land cover (LULC) directly and indirectly 

influence the extent of gully erosion [6]. In India, the problem of 

water-induced rill and gully erosion is particularly severe, with 

an alarming annual soil loss rate of 16.4 tons per hectare, 

resulting in the loss of an estimated five billion metric tons of 

soil annually [7]. Given these implications, accurately mapping 

susceptibility to gully erosion is crucial for effectively mitigating 

its adverse effects [8].   
 

Various statistical models have been utilized for mapping gully 

erosion susceptibility, including machine learning, multi-criteria 

decision-making with Analytical Hierarchy Process (AHP), and 

bivariate & multivariate statistical models [1; 6; 9; 10; 11]. 

Machine learning techniques have significantly advanced gully 

erosion prediction, outperforming traditional methods by 

discerning intricate patterns, analyzing vast datasets, uncovering 

hidden correlations, and mitigating human bias [12]. These 

algorithms continually enhance accuracy, particularly adept at 

identifying complex changes and unforeseen scenarios, even in 

data-limited contexts [13]. Moreover, machine learning-based 

models excel in assessing the impact of climate change-induced 

runoff on gully erosion compared to alternative techniques [14]. 

Selecting an appropriate machine learning model is crucial in 

developing an accurate gully erosion susceptibility mapping 

(GESM), given the variability in model performance across 

different environmental risks [15].  
 

However, the present study, we utilized the machine learning 

model based extreme gradient boosting (XGB) algorithm for 

assessing the gully erosion susceptibility mapping of Sita Nala 

small-watershed area in the part of Chhota Nagpur plateau fringe 

region, India. The machine learning model based XGB model 

have emerged as powerful tools for predicting gully erosion and 

its effectiveness in addressing slope-related geo-environmental 

hazards. The XGB model's scalability and efficiency make it 

indispensable for memory-restricted environments, while its 

ability to manage sparse data and vast datasets ensures precise 

estimates. 
 

MATERIALS AND METHODS 
 

Study area 
 

The present study focused on the Sita Nala small-watershed, a 

tributary situated on the right bank of the Subarnarekha River in 

West Bengal, India, spanning from 22° 05´ 24.54´´ N to 22° 09´ 

13.47´´ N latitude and 87° 01´ 40.33´´ E to 87° 01´ 53.06´´ E 

longitude with an area of 38.606 km² (Fig. 1). The study area, 

located in the Chhotanagpur plateau fringe region, is 

characterized by significant gully erosion due to its undulating 

terrain and varied landforms [2]. With a tropical monsoon 

climate, the region experiences concentrated rainfall from June 

to September, averaging 1500 mm annually, with over 80% 

occurring during the monsoon season, leading to intense 

downpours and significant surface runoff [2]. The surface runoff 

coefficient ranges from 0.4 to 0.7 due to steep terrain, shallow 

soils, and limited vegetation cover, accelerating soil erosion and 

surface water runoff during monsoon periods [16]. Human 

activities such as deforestation and improper agricultural 

practices exacerbate gully erosion [2], posing significant threats 

to soil fertility, agriculture, water quality, and environmental 

stability. Topsoil loss contributes to reduced land productivity 

and downstream sedimentation, impacting aquatic ecosystems. 

Efforts to manage this issue include soil conservation, 

sustainable land use, and community awareness initiatives aimed 

at mitigating gully erosion's effects and ensuring ecological 

balance [2].  
 

 

Fig.1 Location of the study area of Sita Nala small-watershed, a tributary 
situated on the right bank of the Subarnarekha River in West Bengal, India 

 

Data based  
 

As evidenced by previous research, the interplay of various geo-

environmental factors such as topographical and hydrological 

characteristics, soil properties, land use/land cover (LULC), and 

a human activity contributes to gully formation in susceptible 

areas [17]. Drawing from a literature review of relevant studies 

[17; 18; 19], as well as considering the physiographic 

characteristics of the study area, multicollinearity tests, data 

availability, and research scale, this study identifies 24 

conditioning factors influencing gully erosion (Figure 2). 
 

Inventory of gully erosion locations 
 

In the initial stages of developing gully erosion susceptibility 

models (GESMs), an essential step involves the creation of a 

gully inventory map [5]. To achieve this, we employed Digital 

Elevation Model (DEM) data with a resolution of 12.5 meters 

and utilized Google Earth Pro software for delineating gullies 

and generating the inventory maps. Prior to model execution, the 

accuracy of the gully inventory map was validated through field 

surveys conducted between October and December 2023, using a 

Garmin GPS etrex10 device for ground verification. A total of 

100 gullies were randomly selected within the study area, with 

depths ranging from 1.98 meters to 8.17 meters and lengths 

varying between 0.033 and 0.413 km. These gullies were 

digitized as polygons along with their converted point features 

for subsequent model integration. Additionally, to meet model 

prerequisites, 100 non-gully locations were randomly chosen for 

comparison [8]. Thus, the study incorporated 200 random sample 

points, comprising 100 non-gully points and 100 gully points. 

Following the assignment of binary values, with gully points 

labeled as 1 and non-gully points as 0, the dataset was divided 

into training and testing subsets [20] (Fig. 1). Of the total sample 

set, 30% (60 points) were allocated for the testing dataset, while 

the remaining 70% (140 points) were utilized for model training. 

Finally, the study concluded by processing the datasets and 

executing the models using ArcGIS and R software (version 

4.2.0). 
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Gully erosion conditioning factors 
 

The formation of gullies is influenced by a multitude of 

environmental factors, and accurately identifying erosion-prone  

areas depends on carefully selecting the relevant contributing 

factors. In this study, 24 parameters governing gully erosion 

were identified based on available data, extensive field surveys, 

and previous research [8; 15; 20; 21; 22] to compute the Gully 

Erosion Susceptibility Models (GESMs) (Table 1). The factors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

chosen for this investigation include elevation, slope, slope 

length, slope aspect, curvature, drainage density, distance from 

river, distance from lineament, topographic wetness index 

(TWI), distance to road, normalized difference vegetation index 

(NDVI), rainfall, lithology, geomorphology, LULC, soil 

organic density, bulk density, clay content, course fragment, 

sand, silt, carbon exchange capacity, Nitrogen, and soil organic 

carbon. These relevant factors are illustrated in Figure 2 and 

detailed in Table 1.  

 
Fig. 2 Twenty four variables used in this study (a) elevation, (b) slope, (c) slope length, (d) slope aspect, (e) curvature, (f) drainage density, (g) distance from 

river, (h) distance from lineament, (i) TWI (j) distance to road, (k) NDVI, (l) rainfall, (m) lithology, (n) geomorphology, (o) LULC, (p) soil organic density, (q) 

bulk density, (r) clay content, (s) course fragment, (t) sand, (u) silt, (v) carbon exchange capacity, (w) Nitrogen, and (x) soil organic carbon.   
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Multicollinearity assessment 
 

To ensure the robustness of our model, we conducted tests to 

detect and mitigate multicollinearity among the 24 selected 

gully erosion factors. Multicollinearity arises when factors 

exhibit high correlation, potentially leading to inaccuracies in 

modeling [5. We employed two methodologies: Information 

Gain Ratio (IGR) and Variance Inflation Factors (VIF). VIF 

values exceeding 10 or falling below 0.1 indicate 

multicollinearity issues [23]. Conversely, the IGR method 

assesses the relative importance of each factor in predicting 

gully formation likelihood. A higher IGR value, determined by 

Average Merit (AM), indicates greater significance [23]. By 

utilizing a combination of VIF, Pearson's correlation 

coefficients, tolerance criteria, and IGR analysis, we diagnosed 

and mitigated multicollinearity, ensuring the appropriateness of 

the chosen factors for our gully erosion model. 
 

Extreme gradient boosting (XGB) 
 

The XGB algorithm, introduced by [24], was chosen for this 

study due to its status as a cutting-edge tool within the machine 

learning community. This algorithm is built upon classification 

trees [25] and the gradient boosting framework [26]. XGB, an 

extensively used machine learning system, enhances the 

performance of classification trees [27]. A classification tree 

establishes rules to categorize each instance of gully erosion 

based on predisposing factors within a graph structure. In this 

framework, a single tree is constructed, with leaves assigned 

scores indicating the likelihood of a gully falling into a specific 

factor class, whether categorical (e.g., lithotypes) or ordinal 

(e.g., reclassified slope steepness). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Within the XGB framework, the loss function used to train the 

ensemble model is augmented with regularization, penalizing 

the complexity of trees. This regularization technique can 

improve the performance of the gully erosion model by 

mitigating overfitting. Overfitting occurs when a model 

performs well on the training data but struggles with new 

datasets, limiting its predictive ability [28]. Regularization 

helps mitigate overfitting and enhances the flexibility of the 

gully erosion prediction model. XGB combines the outcomes 

of various tree models by averaging their weighted results [29]. 

An iterative process is employed, using weak prediction 

models to refine the overall prediction model at each step by 

correcting misclassifications from the previous iteration. The 

XGB model is constructed by optimizing a specific objective 

function. 
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square error utilized for model fitting on the training data. 

 
1

k

k

i

f




refers to the regularization term, aiding in 

preventing overfitting. 𝐾 denotes the number of individual 

trees, and k
f

represents a tree within the ensemble. ,i
y

and 

i
y



denote the actual and predicted class outputs, respectively. 

Table 1 The current study details the data utilized, its respective sources, and the spatial resolution 

employed 
Sl. No. Category Data source Resolution 

1. Alos Palsar Dem (Elevation) https://search.asf.alaska.edu 12.5 × 12.5 m 

2. Slope Extracted from DEM 12.5 × 12.5 m 

3. Slope length Extracted from DEM 12.5 × 12.5 m 

4. Slope aspect Extracted from DEM 12.5 × 12.5 m 

5. Curvature Extracted from DEM 12.5 × 12.5 m 

6. Drainage density (DD) Extracted from DEM 12.5 × 12.5 m 

7. Distance from the river (DFR) Extracted from DEM 12.5 × 12.5 m 

8. Distance from the lineament (DFL) Extracted from DEM 12.5 × 12.5 m 

9. Topographic Weightiness Index (TWI) Extracted from DEM 12.5 × 12.5 m 

10. Rainfall WorldClim website 885.67×885.67 m 

11. NDVI Satellite image (USGS website) 30 × 30 m 

12. Land Use and Land Cover (LULC) Satellite image (USGS website) 30 × 30 m 

13. Distance from the road (DR) (https://www.openstreetmap.org 30 × 30 m 

14. Lithologic Survey of India 

(bhukosh.gsi.gov.in) 

30 × 30 m 

15. Geomorphology Survey of India 

(bhukosh.gsi.gov.in) 

30 × 30 m 

16. Soil organic density (SOD) https://soilgrids.org 250×250 m 

17. Bulk density https://soilgrids.org 250×250 m 

18. Clay Content in Soil (SC) https://soilgrids.org 250×250 m 

19. Coarse fragments https://soilgrids.org 250×250 m 

20. Sand https://soilgrids.org 250×250 m 

21. Silt https://soilgrids.org 250×250 m 

22. Carbon exchange capacity (CEC) https://soilgrids.org 250×250 m 

23. Nitrogen https://soilgrids.org 250×250 m 

24. Soil organic carbon (SOC) https://soilgrids.org 250×250 m 
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The training procedure of XGB is centered around minimizing 

the objective function mentioned earlier. This is achieved by 

iteratively adding weak learners to the ensemble. Importantly, 

as the learning of trees advances, the complexity of the model 

increases; however, the regularization term acts to mitigate 

overfitting issues by controlling the number of leaf nodes in the 

tree [29]. Further details regarding the construction phases of 

the XGBoost model can be found in previous studies by [24; 

29]. 

In this study, we adhered to recommended parameter 

configurations for XGB tuning, as outlined by [28]. These 

include specifying the maximum number of training rounds 

(iterations) around 200, capping tree depth at 6, and fine-tuning 

other parameters such as learning rate, regularization, variable 

selection, and minimum child weight. Furthermore, we utilized 

ArcGIS software (version 10.8) to delineate the basin's gully-

dominant region by overlaying the final gully susceptibility 

maps generated by XGB models, with a specific focus on areas 

classified as having a very high susceptibility class. 
 

Model validation 
 

Validation and accuracy assessment play a pivotal role in 

evaluating models for management studies [30]. Without 

proper validation, the interpretation of machine learning model 

outputs holds less real-world significance. In this study, various 

statistical indices, including classification accuracy Root Mean 

Square Error (RMSE), Mean Absolute Error (MAE), Kappa 

Index (K), R², Receiver Operating Characteristic (ROC) curve, 

and Accuracy (ACC), among others, were employed for 

validating and assessing the accuracy of the model results. 
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Where, c
P

refers to a number of pixels to be classified correctly 

as gully eroded or non-gully eroded pixels; c x p
P

denotes 

expected results. o i
X

and e i
X

are the
th

i observed and model 

estimation values, respectively, and n is the number of data 

points [23]. 
 

RESULTS  
 

Influence of key factors on GESM 
 

We examined the potential multicollinearity (redundancy) 

among the 24 selected geo-environmental factors through two 

techniques: Information Gain Ratio (IGR) and Variance 

Inflation Factors (VIF). The results presented in Table 2 

indicate no concerns regarding multicollinearity, as all VIF 

values range between 0.1 and 10. According to the statistical 

tests, there exists a low level of collinearity among these 

factors, indicating their relative independence. Additionally, 

Table 2 illustrates the relative influence of each factor on 

GESM within the Sita Nala River basin. The table displays the 

Average Merit (AM) for each factor, representing its 

significance in the GESM. Factors with the highest average 

merit values, such as drainage density (0.77), elevation (0.74), 

geomorphology (0.72), LULC (0.72), and NDVI (0.68), exert 

the greatest influence on an area's susceptibility to gully 

erosion. Conversely, the distance from bulk density (0.21) 

exhibits the least influence. Subsequent to these primary factors 

in descending order of influence are Carbon exchange capacity 

(0.23), Silt (0.25), Distance from the lineament (0.25), and 

curvature (0.29). These findings provide crucial insights into 

the primary drivers of gully erosion in this region, facilitating 

the development of more effective management strategies. 
 

Table 2 Multicollinearity diagnosis using VIF tests and 

Information Gain Ratio (Average Merit) 
 

No. Influencing factors VIF 
Information 

gain ratio 

1. DEM (Elevation) 3.85 0.74 

2. Slope 2.11 0.42 

3. Slope length 1.19 0.33 

4. Slope aspect 1.33 0.36 

5. Curvature 1.88 0.29 

6. 
Drainage density 

(DD) 
3.97 0.77 

7. 
Distance from the 

river (DFR) 
2.41 0.55 

8. 
Distance from the 

lineament (DFL) 
1.39 0.25 

9. 

Topographic 

Weightiness Index 

(TWI) 

1.57 0.30 

10. Rainfall 2.46 0.49 

11. NDVI 3.22 0.68 

12. 
Land Use and Land 

Cover (LULC) 
3.48 0.70 

13. 
Distance from the 

road (DR) 
1.89 0.34 

14. Lithology 1.79 0.48 

15. Geomorphology 3.74 0.72 

16. 
Soil organic density 

(SOD) 
2.21 0.57 

17. Bulk density 1.59 0.21 

18. 
Clay Content in Soil 

(SC) 
2.99 0.63 

19. Coarse fragments 1.91 0.61 

20. Sand 2.34 0.38 

21. Silt 2.11 0.25 

22. 
Carbon exchange 

capacity (CEC) 
1.89 0.23 

23. Nitrogen 1.78 0.28 

24. 
Soil organic carbon 

(SOC) 
1.39 0.31 

 

Gully erosion susceptibility mapping 
 

GESMs serve as crucial instruments for environmental 

protection and sustainable development, aiding in the 

comprehension of erosion patterns and the formulation of 

mitigation strategies. This study utilized 24 factors influencing 

gully formation to develop a GESM employing the XGB model 

(Fig. 5). To delineate clear risk zones, the quantile 

classification method within ArcGIS software was utilized, 

enabling the classification of susceptibility levels into three 

zones: areas with no gully erosion, those with high 
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susceptibility, and those with very high susceptibility [31]. The 

examination of each susceptibility zone offered a 

comprehensive understanding of the vulnerability of different 

areas within the study region to gully erosion. Figure 3 

illustrates the GESMs generated by the XGB models, 

showcasing the predicted susceptibility levels across the Sita 

Nala River basin. Monitoring revealed slight disparities in the 

spatial distribution of risk zones, with the XGB model 

classifying a larger portion of the study area into the high gully 

susceptibility area and moderate gully susceptibility area at 

13.49% and 11.24% respectively (Table 3, and Fig. 3). 

Conversely, an area was classified as non-gully erosion area 

(75.24%) by the XGB model. Encouragingly, the model 

exhibited good classification abilities and effectively identified 

the prominent gully-prone areas within the basin. Ultimately, 

the XGB modeling techniques proved effective in constructing 

GESMs that delineate distinct zones of varying susceptibility 

levels throughout the river basin under investigation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The model demonstrated satisfactory performance, accurately 

reflecting and aligning with the observed patterns of gully 

prevalence across the region. By pinpointing areas susceptible 

to gully erosion, these GESMs offer valuable tools for 

prioritizing conservation efforts and devising sustainable land 

management practices, thereby contributing to environmental 

protection and the long-term health of the basin. 
 

Validation of model 
 

To assess the effectiveness of the XGB model, we conducted a 

battery of statistical tests on both the training and testing 

datasets. These tests included ACC, MAE, Kappa index, R², 

and RMSE. Analysis of the training dataset revealed that the 

XGB model exhibited superior performance across all metrics 

(Table 4). It achieved an impressive accuracy rate of 88.1%, a 

Kappa index of 0.84 (indicating strong agreement), a 

remarkably high R² of 0.85, along with the lowest RMSE 

(0.16) and MAE (0.12) values.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

Fig. 3 Prediction of gully erosion susceptibility mapping with ground truth 
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These findings underscore the XGB model's exceptional 

capability to accurately forecast gully erosion. Furthermore, the 

evaluation results underscored the consistent and robust 

performance of the XGB models, as they consistently 

demonstrated comparable levels of predictive accuracy across  

both the testing and training datasets when evaluated using the 

same set of statistical metrics (refer to Table 4). This suggests 

that the models generalize well and can be confidently applied 

to unseen data. 
 

For a more assessment of the model performance, we utilized 

ROC curve analysis, depicted in Figure 4. The ROC curve 

visually illustrates the balance between the false positive rate 

(the proportion of non-gully areas erroneously classified as 

gullies) and the true positive rate (the proportion of actual gully 

areas correctly identified) across various probability thresholds. 

Both models demonstrated highly satisfactory predictive 

capabilities in delineating gully erosion susceptibility zones, as 

indicated by the Area Under the Curve (AUC) values, which 

stood at 84.2% for the XGB model. This substantial AUC 

value, with a slight advantage observed for the XGB model, 

signifies robust model performance, where higher values 

correspond to greater accuracy in distinguishing between gully-

prone and non-gully areas. 

 
Fig.4 ROC of the prediction model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

DISCUSSION 
 

Gully erosion poses a grave environmental threat, impacting 

not only the landscape but also human safety and agricultural 

productivity. It contributes to habitat destruction, soil loss, 

water contamination, infrastructure damage, and increased 

flood risks. Conventional statistical approaches to analyzing 

gully erosion may be constrained by issues like overfitting and 

uncertainty [32]. This study presents a robust solution by 

harnessing machine learning techniques. We have developed a 

precise Gully Erosion Susceptibility Model (GESM) tailored 

for the Sita Nala River basin. This model integrates 24 crucial 

factors influencing gully formation and employs two advanced 

machine learning algorithms, notably the XGB model. Our 

research stands out for its comprehensive methodology. Unlike 

many studies on gully erosion, we incorporate a diverse array 

of data types, employ rigorous validation methods, and 

consider a comprehensive set of controlling factors. 

Additionally, we utilized Information Gain Ratio (IGR) and 

Variance Inflation Factor (VIF) techniques to evaluate the 24 

factors and ensure they are not overly correlated 

(multicollinearity). Analysis of the Average Merit (AM) 

highlighted drainage density (0.77), elevation (0.74), 

geomorphology (0.72), LULC (0.72), and NDVI (0.68) as the 

most influential factors shaping the GESM for the Sita Nala 

River basin. Conversely, bulk density emerged as the least 

influential factor. Our findings resonate with numerous studies 

conducted across various geomorphological and climatic 

regions. Studies by Huang et al. [33] in China, Saha et al. [34] 

in India, Setargie et al. [35] in Ethiopia, and Garosi et al. [21] 

in Iran consistently underscore the critical role of diverse 

factors in gully erosion development, aligning with the 

outcomes of our investigation. 
 

To evaluate the XGB model's performance thoroughly, we 

conducted an extensive array of statistical tests on both the 

training and testing datasets. These tests encompassed ROC 

analysis, RMSE, MAE, R², ACC, and Kappa index analysis. 

While both models demonstrated robust performance and 

suitability for this study, the XGB model emerged as 

particularly adept at predicting GESM. This finding contrasts 

with prior studies by Saha et al. [34], Avand et al. [36], and 

Hosseinalizadeh et al. [37], which favored the RF model for its 

accuracy. Monitoring revealed slight disparities in the spatial 

distribution of risk zones, with the XGB model classifying a 

larger portion of the study area into the High and moderate 

Table 3 Gully erosion susceptibility mapping of the study area using the XGB algorithms 
 

Classes 
XGB 

Area in km² Area in % 

High gully susceptibility area (0.75-1) 5.21 13.49 

Moderate gully susceptibility area (0.5-0.75) 4.34 11.24 

Non-gully erosion area (less than 0.5) 29.05 75.24 

Total 38.60 100 
 

Table 4 Prediction performances of the proposed XG Boost model using the  

training and testing dataset. 
 

Statistical index 
XGB 

Training Testing 

Accuracy (%) 88.1 87.7 

Kappa index (K) 0.84 0.85 

MAE 0.12 0.15 

RMSE 0.16 0.14 

R² 0.85 0.88 
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gully erosion susceptibility categories, accounting for 13.49% 

and 11.24%, respectively (refer to Table 3). Conversely, the 

XGB model identified 75.24% of the area as non-gully erosion 

areas. To validate the accuracy of our models, we conducted 

follow-up field surveys in January and March 2024, utilizing 

GPS technology to obtain precise location data. This field 

validation process is pivotal as it illustrates how well the model 

predictions align with real-world conditions. The findings of 

this research unequivocally demonstrate the suitability of the 

XGB machine learning technique for GESM. By facilitating 

targeted interventions, this approach transcends mere 

management strategies, fostering sustainable land use practices 

by integrating community involvement and promoting 

ecological benefits. Ultimately, this integrated approach aims 

to mitigate the adverse impacts of gully erosion on the 

environment, soil, and land, thereby contributing to a more 

sustainable future. 
 

CONCLUSIONS 
 

This study successfully developed a precise GESM for the Sita 

Nala River basin, employing machine learning algorithms, 

specifically the XGB algorithm, and incorporating 24 essential 

factors influencing gully formation. To ensure these factors 

were not overly correlated, we employed IGR and VIF 

techniques, which revealed no multicollinearity issues. Our 

analysis within the basin identified drainage density (0.77), 

elevation (0.74), geomorphology (0.72), Land Use/Land Cover 

(LULC) (0.72), and Normalized Difference Vegetation Index 

(NDVI) (0.68) as the most significant factors controlling 

susceptibility to gully erosion, while distance from the 

lineament had the least impact. We conducted rigorous 

statistical tests (RMSE, MAE, Kappa index, R², ACC, and 

ROC) on both training and testing data to evaluate the model's 

performance. The XGB model demonstrated commendable 

performance and proved well-suited for predicting gully 

erosion susceptibility zones within the GESM. The model 

identified approximately 13.49% of the basin area as highly 

susceptible to gully erosion, forming what can be termed as 

gully-dominated zones. This critical finding emphasizes the 

urgent need for targeted management techniques in these 

vulnerable areas. Our findings suggest that the machine 

learning based on XGB model effectively identified regions 

with actively developing gullies. By focusing on these 

vulnerable areas, decision-makers can implement tailored and 

sustainable programs and policies to mitigate the future impacts 

of gully erosion on residents. 
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