

Available Online at http://www.recentscientificcom

CODEN: IJRSFP (USA)

International Journal of Recent Scientific Research Vol. 15, Issue, 09, pp.5003-5005, September, 2024 International Journal of Recent Scientific Rezearch

ISSN: 0976-3031

RESEARCH ARTICLE

ON FINDING INTEGER SOLUTIONS TO HOMOGENEOUS TERNARY QUADRATIC

DIOPHANTINE EQUATION

 $x^{2} + (2k+1)y^{2} = (k+1)^{2}z^{2}$

Dr. N.Thiruniraiselvi^{1*}, Dr. M.A.Gopalan²

¹Assistant Professor, Department of Mathematics, M.A.M. College of Engineering and Technology, Affiliated to Anna University (Chennai), Siruganur, Tiruchirapalli – 621105, Tamil Nadu, India.

² Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University Trichy-620

DOI: http://dx.doi.org/10.24327/ijrsr.20241509.0944

002, Tamil Nadu, India.

ARTICLE INFO

ABSTRACT

Article History:

Received 16th July, 2024 Received in revised form 18st August, 2024 Accepted 16th September, 2024 Published online 28th September, 2024

Key words:

Homogeneous quadratic, Ternary quadratic, Integer solutions

Copyright[®] The author(s) 2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which

Copyright[©] The author(s) 2024, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

It is quite obvious that Diophantine equations, one of the areas of number theory, are rich in variety [1, 2].In particular, the ternary quadratic Diophantine equations in connection with geometrical figures occupy a pivotal role in the orbit of mathematics and have a wealth of historical significance. In this context, one may refer [3-10] for second degree Diophantine equations with three unknowns representing different geometrical figures.

In this paper, the ternary quadratic Diophantine equation representing cone given by $x^2 + (2k+1)y^2 = (k+1)^2 z^2$ is

studied for determining its integer solutions successfully through elementary algebra.

Method of analysis

The homogeneous second degree equation in three unknowns to be solved is $x^2 + (2k+1) y^2 = (k+1)^2 z^2$ (1)

To start with, (1) is satisfied by $x = 4k^3 + 6k^2 + 3k$, y = 2k + 1, $z = 4k^2 + 2k + 1$

*Corresponding author: Dr. N. Thiruniraiselvi

M.A.M. College of Engineering and Technology, Siganur, Trichy- 621 105

However, there are many more integer solutions and the process of obtaining various solution patterns is illustrated below :

Process 1
Taking

$$x = (k+1) X, y = (k+1) Y$$
(2)

in (1) , it leads to the ternary quadratic equation $X^{2} + (2k+1) Y^{2} = z^{2}$

Varieties of integer solutions to homogeneous ternary quadratic Diophantine equation

represented by $x^2 + (2k+1)y^2 = (k+1)^2 z^2$ are presented.

which is satisfied by

$$Y = 2 p q$$
, $X = (2k+1) p^2 - q^2$
(4)

(3)

and

$$z = (2k+1)p^2 + q^2$$
(5)

Using (4) in (2), we have

$$x = (k+1) [(2k+1)p^{2} - q^{2}],$$

$$y = 2(k+1)p q.$$
(6)

Thus, (5) & (6) represent the integer solutions to (1). Process 2 Consider (3) as the system of double equations as shown below

$$z + X = Y^{2}$$
$$z - X = 2k + 1$$

Solving the above pair of equations, we have $V = 2\pi^2 + 1$.

$$Y = 2s + 1, X = 2s^2 + 2s - k \tag{7}$$

and

$$z = 2s^2 + 2s + k + 1 \tag{8}$$

From (7) and (2), we get

$$x = (k+1) (2s^{2} + 2s - k) ,$$

$$y = (k+1) (2s+1).$$
(9)

Thus , (8) & (9) satisfy (1). Note 1

It is to be noted that ,one may write (3) as the pair of equations as follows:

$$z + X = (2k+1) Y^2$$
$$z - X = 1$$

In this case, the solutions to (1) are obtained as

$$x = (k+1) [k (2s+1)^{2} + 2s^{2} + 2s],$$

$$y = (k+1) (2s+1),$$

$$z = [k (2s+1)^{2} + 2s^{2} + 2s + 1].$$

Process 3 The substitution of the transformations x = k(k+1)X, $z = (k+1)P + (2k+1)\beta$, $y = (k+1)P + (k+1)^2\beta$

(10) in (1) leads to the ternary quadratic equation

$$P^{2} = X^{2} + (2k+1)\beta^{2}$$
(11)

which is satisfied by $\beta = 2 p q$, $X = (2k+1) p^2 - q^2$, $P = (2k+1) p^2 + q^2$ (12)

In view of (10), the integer solutions to (1) are given b

$$x = k (k+1) [2k+1) p^{2} - q^{2}],$$

$$y = (k+1) [2k+1) p^{2} + q^{2}] + 2 p q (k+1)^{2},$$

$$z = (k+1) [2k+1) p^{2} + q^{2}] + 2 p q (2k+1).$$
(13)

Apart from (10) ,one may consider the transformations as x = k(k+1)X, $z = (k+1)P - (2k+1)\beta$, $y = (k+1)P - (k+1)^2\beta$

For this choice , the corresponding integer solutions to $\left(1\right)$ are given by

$$x = k (k+1) [2k+1) p^{2} - q^{2}],$$

$$y = (k+1) [2k+1) p^{2} + q^{2}] - 2 p q (k+1)^{2},$$

$$z = (k+1) [2k+1) p^{2} + q^{2}] - 2 p q (2k+1).$$

Process 4 Assume $z = a^{2} + (2k+1)b^{2}$ (14)

Consider

$$(k+1)^{2} = (k+i\sqrt{2k+1}) (k-i\sqrt{2k+1})$$
(15)

Using (14) & (15) in (1) and employing the factorization technique ,we write

$$x + i\sqrt{2k+1} y = (k + i\sqrt{2k+1}) (a + i\sqrt{2k+1}b)^2$$

On equating the real and imaginary parts in the above equation , we have

$$x = k[a^{2} - (2k+1)b^{2}] - 2(2k+1)ab,$$

$$y = 2kab + [a^{2} - (2k+1)b^{2}].$$
(16)

Observe that (14) & (16) satisfy (1). Process 5 Write (1) as $x^{2} + (2k+1) y^{2} = (k+1)^{2} z^{2} * 1$ (17)

Express the integer 1 on the R.H.S. of (17) as

$$1 = \frac{(k + i\sqrt{2k+1})(k - i\sqrt{2k+1})}{(k+1)^2}$$
(18)

Assume

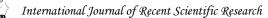
$$z = (k+1)^{2} [a^{2} + (2k+1)b^{2}]$$
(19)

Substituting (15), (18) & (19) in (17) and following the procedure as in Process 4 ,we get

$$x = (k+1)\{(k^2 - 2k - 1)[a^2 - (2k+1)b^2] - 4k(2k+1)ab\}, (20)$$

$$y = (k+1)\{2k[a^2 - (2k+1)b^2] + 2(k^2 - 2k - 1)ab\}.$$

Thus , (19) & (20) satisfy (1). Process 6



Note 2

It is to be observed that , choosing the values of k to be $k = 2s^2 + 2s$

in (1) and employing the transformations

$$x = (2s+1)(2s^{2}+2s+1) X, y = (2s^{2}+2s+1) Y, z = (2s+1)w$$
(21)

in (1), it reduces to the Pythagorean equation given by

$$X^2 + Y^2 = w^2$$
(22)

Considering the most cited solutions of (22) and utilizing (21), the corresponding integer

solutions to (1) are obtained.

CONCLUSION

In this paper, the homogeneous ternary quadratic equation representing homogeneous cone given by $x^{2} + (2k+1)y^{2} = (k+1)^{2}z^{2}$ is studied for obtaining its

integer solutions through substitution technique and factorization method. One may search for other forms of quadratic equations with multiple variables to determine their integer solutions.

References

- L.E. Dickson, History of Theory of Numbers, Vol.2, Chelsea Publishing Company, NewYork, 1952. https:// archive.org/details/historyoftheoryo01dick/page/n1/ mode/2up
- L.J. Mordell, Diophantine equations, Academic press, New York, 1969.Diophantine Equations. By L. J. Mordell. Pp. 312. 1969. 90s. (Academic Press, London & amp; New York.) | The Mathematical Gazette | Cambridge Core
- 3. M.A.Gopalan, D.Geetha, Lattice Points on the Hyperboloid of Two sheets $x^2 - 6y + y^2 + 6x - 2y + 5 = z^2 + 4$, Im-

pact J.Sci. Tech, Vol. 4(1), Pp. 23-32, 2010.

4. M.A.Gopalan, S.Vidhyalakshmi and T.R.Usharani, Integral Points on the Non-homogeneous Cone $2z^2 + 4x + 8x - 4z + 2 = 0$, Global Journal of

Mathematics and Mathematical Sciences, Vol. 2(1), Pp. 61-67, 2012.https://www.ripublication.com/Volume/gjmmsv2n1.htm

How to cite this article:

N.Thiruniraiselvi and M.A.Gopalan.(2024). On Finding Integer Solutions to Homogeneous Ternary Quadratic Diophantine Equation. *Int J Recent Sci Res*.15(09), pp.5003-5005.

(2) TRSR 5. M.A.Gopalan, S.Vidhyalakshmi and N.Thiruniraiselvi, Observations on the ternary quadratic Diophantine equation $x^2 + 9y^2 = \mathbf{0} z^2$, International Journal of Applied

Research, Vol.1 (2), Pp.51-53, 2015. https://www.allresearchjournal.com/archives/2015/vol1issue2/ PartB/60.1-590.pdf

6. M.A.Gopalan, S.Vidhyalakshmi and N.Thiruniraiselvi, Construction of Diophantine quadruple through the integer solution of ternary quadratic Diophantine equation $x^2 + y^2 = z^2 + 4n$, International Journal of Innovative

Research in Engineering and Science, Vol.5(4), Pp.1-7, May-2015

7. M.A.Gopalan, S.Vidhyalakshmi and N.Thiruniraiselvi, Observations on the cone $z^2 = a^2 + a(a-1)y^2$, Inter-

national Journal of Multidisciplinary Research and Development, Vol.2 (9), Pp.304-305, Sep-2015.https://www.allsubjectjournal.com/assets/archives/2015/vol2is-sue9/164.pdf

8. M.A.Gopalan, S.Vidhyalakshmi and N.Thiruniraiselvi, A Study on Special Homogeneous Cone $z^2 = 2 x^2 + y^2$, Vidyabharati International Interdisci-

plinary Research Journal, (Special Issue on "Recent Research Trends in Management, Science and Technology"-Part-3, pdf page- 330), Pg: 1203-1208, 2021. https://www.viirj.org/specialissues/SP10/Part%203.pdf

9. M.A.Gopalan, S.Vidhyalakshmi and N.Thiruniraiselvi, On the Homogeneous Ternary Quadratic Diophantine Equation $6x^2 + 5y^2 = 341z^2$, Vidyabharati Inter tional

Interdisciplinary Research Journal, (Special Issue on "Recent Research Trends in Management, Science and Technology"-Part-4, pdf page- 318), Pg: 1612-1617, 2021. https://www.viirj.org/specialissues/SP10/Part%204.pdf

 10. M.A.Gopalan, S.Vidhyalakshmi and N.Thiruniraiselvi, A class of new solutions in integers to Ternary Quadratic Diophantine Equation

 <u>P</u> (x² + y²) − 3 y + 2x + 2y + 4 = 5 z²

Journal of Research Publication and Reviews, Vol 5 (5), Page – 3224-3226, May (2024). https://www.ijrpr.com/ current_issues.php