

Available Online at http://www.recentscientific.com

CODEN: IJRSFP (USA)

International Journal of Recent Scientific Research Vol. 16, Issue, 09, pp.493-496, September 2025

International Journal of Recent Scientific Research

Subject Area: Zoology

COMPARATIVE STUDY ON NUTRITIONAL COMPOSITION OF SEVEN AIR-BREATHING FRESHWATER FISHES FROM ASSAM, INDIA

Dorothi Katyayan¹, Manmi Kalita^{2*} and Pradip Kumar Sarma³

¹Post Graduate Student, Department of Zoology, Bhattadev University, Bajali, Assam, India ²Research Scholar, Department of Zoology, Bhattadev University, Bajali, Assam, India ³Associate Professor, Department of Zoology, Bhattadev University, Bajali, Assam, India

DOI: http://dx.doi.org/10.24327/ijrsr.20251609.0091

ARTICLE INFO

Article History:

Received 19th August 2025 Received in revised form 28th August 2025 Accepted 15th September 2025 Published online 28th September 2025

Key words:

Nutritional composition, Kamrup, protein, air breathing fish.

ABSTRACT

This study was carried out to compare the nutritional values of seven freshwater, airbreathing fish species commonly found in Assam, India. The fish included *Channa punctata, Channa striata, Channa gachua, Channa marulius, Heteropneustes fossilis, Anabas testudineus*, and *Clarias magur*. Samples were collected from the Kamrup district, and their protein, fat, moisture, ash, and carbohydrate contents were analyzed. The results showed that *Channa marulius* had the highest protein content at 24.94%, while *Clarias magur* had the lowest at 14.3%. Interestingly, *Clarias magur* contained the most fat (8.14%), and *Heteropneustes fossilis* had the least (1.52%). Moisture levels were high in all species, while ash and carbohydrate contents were quite low. These findings could be helpful for researchers, nutritionists, fish farmers, and consumers in choosing fish based on their nutritional benefits and for future studies.

Copyright© The author(s) 2025, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Freshwater fish species hold important commercial value due to their nutritive benefits. Fish is considered as an excellent source of protein and essential nutrients required for maintaining a healthy body (Adeniyi et al., 2012). The fishery sector plays a vital role in providing protein-rich food and generating valuable foreign exchange (Varadharajan et al., 2013). In India, the nutritional composition of fish has mainly been studied to measure their nutritional value. Fish protein is known for its high digestibility and is regarded as having significant biological and growth-promoting properties (Shekkar et al., 2004), containing all ten essential amino acids in adequate amounts for human consumption (Bhilave et al., 2013). Considerate the nutritional composition is vital for estimating the nutritional value of various species, not only fish but also for quality assessment and optimal utilization of these natural resources (Rodriguez-Gonzalez et al., 2006). Nowadays, consumers are increasingly interested

*Corresponding author: Manmi Kalita

Research Scholar, Department of Zoology, Bhattadev University, Bajali, Assam, India

in understanding the nutritional value of the products they consume. Generally, the biochemical composition of the entire fish body reflects its quality. Consequently, the proximate biochemical composition of a species is helpful in determining its nutritional and edible value in terms of energy elements when compared to other species (Arunachalam *et al.*, 2017). Thus, the current study was conducted to compare the nutritional composition of seven air-breathing freshwater fish species (i.e., *Channa punctata, Channa striata, Channa gachua, Channa marulius, Heteropneustes fossilis, Anabas testudineus*, and *Clarias magur*) from Kamrup district of Assam, India.

MATERIALS AND METHODS

Study areas, sample collection and preservation

The fish sample used for the experiment was air-breathing freshwater fish and they were collected from the local fish market of Kamrup district, Assam, India. The collected freshwater fish samples were taken to the fish biology and fishery sciences laboratory, Department of Zoology, Bhattadev University in air tight polythene bags and stored at 4°c for further nutritional study. The whole experiment was conducted during the month of April, 2024 to May, 2025.

Method for Biochemical Analysis

1. Protein content

Protein content was determined by Lowry's method with slight modification (Lowry *et al.*, 1951). To a 10 mg of sample 1 ml of 1N NaOH was added for protein extraction in water bath for 30 minutes. Thereafter, it was cooled at room temperature and neutralized with 1 ml of 1N HCL. The extracted sample was centrifuged at 2000 rpm for 10 minutes, and an aliquot of the sample (1 ml) was further diluted with distilled water (1/9 v/v). From the diluted sample, 1 ml was taken and treated with 2.5 ml of mixed reagent (carbonate – tartarate – copper) and 0.5 ml of 1N Folin's reagent. After 30 minutes, sample absorbency was read at 750 nm using UV-visible spectrophotometer (EVOLUTION 201, Thermo Scientific) and results were expressed in percentage.

2. Lipid content

3 gm of dried sample was extracted with petroleum ether in a soxhlet apparatus for about 8 hours. After that the petroleum ether was removed by fractional distillation. The flask was dried at room temperature and the amount of lipid in the flask was calculated.

% lipid= (weight of lipid/ weight of sample) x 100.

3. Moisture content

5g of dried fish sample was taken and kept at 105° C in the hot air oven until a constant weight is obtained. The difference in weight can be calculated and expressed as % moisture content of the sample. Percentage can be calculated by the following formula:

Moisture % = (weight of tissue – dry weight of tissue/ weight of tissue) x100

4. Ash content

 $\times 100$

About 3-5g prepared sample was taken in pre-weighed porcelain crucible and was placed in muffle furnace at 550°C for 6 hours. Then the crucibles were a cooled in desiccators. After recording the weight of ash, the ash content of the sample can be computed as below;

% Ash content = (Weight of ash /weight of sample)

5. Carbohydrate content

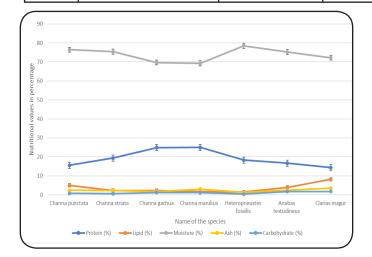
Carbohydrate content was calculated based on difference calculation [carbohydrate = 100% - (% of moisture+% of ash+% of protein+% of lipid)].

RESULT AND DISCUSSION

During the present study, the protein content was recorded at 15.6%, 19.38%, 24.92%, 24.94%, 18.28%, 16.66%, and 14.3% for *C. punctata, C. striata, C. gachua, C. marulius, H. fossilis, A. testudineus*, and *C. magur*, respectively. The lipid content for these species was recorded as 5.04%, 2.34%, 2.24%, 1.66%, 1.52%, 3.96%, and 8.14%. The moisture content was found to be 76.42%, 75.36%, 69.7%, 69.22%, 78.5%, 75.2%, and 72.24% for *C. punctata, C. striata, C. gachua, C. marulius, H. fossilis, A. testudineus*, and *C. magur*, respectively. The ash content was determined to be 2.4%, 2.3%, 1.8%, 3.0%, 1.32%, 2.42%, and 3.46% for *C. punctata, C. striata, C. str*

gachua, C. marulius, H. fossilis, A. testudineus, and C. magur, respectively. The carbohydrate content for C. punctata, C. striata, C. gachua, C. marulius, H. fossilis, A. testudineus, and C. magur was found as 0.76%, 0.6%, 1.2%, 1.44%, 0.38%, 1.74%, and 1.76% in each. The protein content of the fresh fish samples ranged from 14.3% to 24.94%, with the highest value at 23.94% in C. marulius and the lowest value at 14.3% in C. magur. The lipid content varied from 1.52% to 8.14%, with the maximum value in C. magur and the minimum value in H. fossilis. The moisture content ranged from 69.22% to 78.5%, highest value at 78.5% in H. fossilis and lowest value to 69.22% in C. marulius. The ash content varied from 1.32% to 3.46%, with the highest in C. magur and the lowest in H. fossilis. Lastly, the carbohydrate content ranged from 0.38% to 1.76%, with the highest in C. magur and the lowest in H. fossilis.

According to Bijaylakshmi, et al.,(2014)C. striata contains high moisture content i.e. 80.11% and low lipid content i.e. 1.66%. T. fasciatus contained high lipid content (5.93%). The lipid value and moisture value of C. striata was found to be 1.47% lipid and 82.66% moisture reported by Ahmed et al., 2012. According to Sarma et al.,2019, protein and crude fat in all six fish ranged from 15.65 (S. phasa) to 20.88% (C. garua) and 2.91 (C. garua) to 13.23% (S. phasa), respectively. Protein was estimated in A. mola (18.46%), G. chapra (15.23%), P. chola (14.08%), C. nama (18.26%), P. atherinoides (15.84%) and in A. coila (16.99%) respectively. Fat content was recorded as 4.10%, 5.41%, 3.05%, 1.53%, 2.24% and 3.53% respectively in the six species of fish (Mazumdar et al.,2008).


Jahan *et al.* (2017) recorded that the protein, lipid, moisture and ash content of five samples ranged from 54.31 (*P. sophore*) to 68.90% (small prawns), 13.33 (*P. sophore*) to 19.33% (*L.* rohita), 11.55 (*L. rohita*) to 13.95% (*H. molitrix*) and 0.16 (small prawns) to 0.44% (*C. mrigala*), respectively. The highest value of carbohydrate was 19.23% (*P. sophore*) and the lowest was 1.75% (*C. mrigala*).

Paul et al.,2013 recorded the protein content of C. striatus and C. marulius that ranged 18.24% and 20.5% respectively. Chakraborty and Brahma (2017) recorded the protein content of C. punctata to be 17.84%. Borah, 2020 recorded the lipid content of Clarias magur to be 7.90 ± 0.63 . Ghosh and Majumdar, 2020 recorded the lipid content of *Heteropneustes* fossilis and Anabas testudineus to be 1.4% and 4.4% respectively. Paul et al., 2023 recorded the moisture content of C. striatus and C. marulius that ranged 70.80% and 69.5% respectively. Pegu et al., 2023 recorded the moisture percentage of C. punctatus to be 70.55%. Borah, 2020 recorded the ash content of *Clarias magur* to be 3.74 ± 0.28 . Peguet al.,2023 recorded the ash content of C. punctatus per 100 gm to be 6.81±0.94. Paulet al., 2023 recorded the ash content of C. striatus and C. marulius that ranged 1.97% and 2.20% respectively. Paul et al., 2023 recorded the carbohydrate content of C. striatus and C. marulius that ranged 1.10 ± 0.31 and 0.84 ± 0.10 respectively. The present study supported comparatively with other findings.

494 www.recentscientific.com

Sl .No	Name of species	Protein (%)	Lipid (%)	Moisture (%)	Ash (%)	Carbohydrate (%)
1	Channa punctata (Bloch, 1793)	15.6 ± 1.10	5.04 ± 0.65	76.42 ± 0.38	2.4 ± 0.21	0.76 ± 0.31
2	Channa striata (Bloch, 1793)	19.38 ± 2.33	2.34 ± 0.50	75.36 ± 2.24	2.3 ± 0.22	0.6 ± 0.38
3	Channa gachua (Hamilton, 1822)	24.92 ± 1.26	2.24 ± 0.19	69.7 ± 1.02	1.8 ± 0.20	1.2 ± 0.44
4	Channa marulius (Hamilton, 1822)	24.94 ± 1.25	1.66 ± 0.30	69.22 ± 1.28	3.0 ± 0.18	1.14 ± 0.51
5	Heteropneustes fossilis (Bloch, 1794)	18.28 ± 0.43	1.52 ± 0.25	78.5 ± 0.41	1.32 ± 0.28	0.38 ± 0.14
6	Anabas testudineus (Bloch, 1792)	16.66 ± 0.35	3.96 ± 0.20	75.2 ± 0.33	2.42 ± 0.23	1.74 ± 0.27
7	Clarias magur (Linneaeus, 1758)	14.3 ± 0.33	8.14 ± 0.27	72.24 ± 0.28	3.46 ± 0.25	1.76 ± 0.23

Table 1. Comparative analysis of the biochemical constituents of the selected freshwater fish species

Fig.1. Comparation between nutritional composition of seven air breathing freshwater fishes.

CONCLUSION

The present study concludes that the studied fish species are nutritionally enriched and can play an excellent role in the fishery science and these locally obtainable fishes are highly recommended for regular consumption. Moreover, it can also serve as a good source of income for the rural people of the area as there is a high market value.

References

- Adeniyi, S.A., Orjiekwo, C.L., Ehingbonare, J.E and Josiah, S.J., (2012). Nutritional composition of three different fishes (*Claria gariepinus, Malapterurusel ec*tricus and Tilapia guineensis). Pak. J. Nutr., 11: 793-797.
- Ahmed, S., Rahman, A. A., Mustafa, M. G., Hossain, M. B., & Nahar, N. (2012). Nutrient composition of indigenous and exotic fishes of rainfed waterlogged paddy fields in Lakshmipur, Bangladesh. World Journal of Zoology, 7(2), 135–140.
- Arunachalam A, Nanthini N, Malathi S and Ragapriya A. (2017). Biochemical analysis of fresh water fish species of Veeranam Lake, Cuddalore Dist, Tamil Nadu,

- India. International Journal of Zoology and Applied Biosciences. 2 (4): 202-206.
- 4. Borah B. C. (2020). Asian Catfish *Clarias magur* (Ham), a Wonder Fish for Health and Nutrition. Acta Scientific Nutritional Health 4.2:139-143.
- 5. Bhilave, M.P., Nadaf, S.B., Bhosale, S.V. and Nalawade, V.B., (2013). Nutritional analysis of plant formulatedfeeds. Res. J. Agr. Sci., 4(4): 480-483.
- 6. Bijayalakshmi C, Romen N, Shomorendra M. (2014). Proximate composition of small indigenous fish (*Amblypharyngodon mola*) tissue of Manipur. Int. J. Curr. Res.;6(2):4965-4967.
- 7. Chakraborty S., Brahma B. K. (2017). Nutritional profile of small indigenous food fish, *Channa punctatus*. J Assam Sc. Soc. 58(1): 14-24.
- 8. Ghosh S and Majumdar P. (2020). Comparison Between Value of Indian Major Carps and Air Breathing Carps in Open Inland Fishery Sector. Acta Scientific Agriculture 4.9: 60-62.
- 9. Jahan, S.N., Bayezid, Islam, M.A.B., Siddique, M.A.B., Karmokar, P.K., Flowra F.A. (2017). Biochemical quality assessment of fish powder. Am. J. Food Nutr., 5 (3):110-114.
- Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. (1951). Protein Measurement with Folin Phenol Reagent. Journal of Biological Chemistry, 193: 256-275.
- 11. Mazumder, M. S. A., Rahman, M. M., Ahmed, A. T. A., Begum, M., & Hossain, M. A. (2008). Proximate composition of some small indigenous fish species (SIS) in Bangladesh. International Journal of Sustainable Crop Production, 3(4): 18–23.
- Pegu A. Kalita R. Das P. Baruah C. (2023). Nutritional composition of small indigenous species of fishes of Northeast India: A systematic review. Journal of Applied and Natural Science. 2023, 15(2), 649-662.
- Rodriguez-Gonzalez, H., Kernandez-Liamas, A. Villarreal, H., Saucedo, P.E., García-Ulloa M. and Rodriguez-Jaramillo, M.C., (2006). Gonadal development andbiochemical composition of female cray fish *Cheraxquadricarinatus* (Decapoda: Parastacidae) in relation.to the gonado somatic index at first maturation.

www.recentscientific.com 495

- Aquaculture, 254:637-645.
- Sarma D, Joshi V, Akhtar M. S., Ciji A., Sharma P, Kushwaha S. S. Das P. Singh A.K. (2019). Nutrient Composition of Six Small Indigenous Fish from NEH Region and Their Contribution Potential to Human Nutrition. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 89: 475–482.
- 15. Shekar, P. and Christy. L., (2014). Haematological changes in the fresh water cat fish *Mystus vittattus*, exposed to sublethal concentrations of phosphamidon J. Ecobiol., 8(1), 25-28.
- 16. Varadharajan, D., Soundarpandian, P., and Pushparaja, N., (2013). The global science of crab biodiversity from Puducherry coast, south east coast of India. Arthropods, 2(1), 26-35.

How to cite this article:

Dorothi Katyayan, Manmi Kalita and Pradip Kumar Sarma. (2025). Comparative study on nutritional composition of seven airbreathing freshwater fishes from Assam, India. *Int J Recent Sci Res*.16(08), pp.493-496.

496 www.recentscientific.com