INTRODUCTION

crossley and Hildebrand[3] introduced and investigated irresolute functions which are stronger than semi-continuous maps but are independent of continuous maps. Since then several researchers have introduced several strong and weak forms of irresolute functions. Di Maio[4], Faro[5], Cammaro[2], Maheshwari[7] and Sundaram[12] have introduced and studied quasi irresolute and strongly irresolute maps, strongly α - irresolute maps, almost irresolute maps, α- irresolute maps and gc-irresolute maps respectively.

The notion of homeomorphism has been introduced and generalized by several topologist. Biswas[1], Crossley and Hildebrand[3], Gentry[6], Tadros[13], Um-ehara and Maki et al[14] have introduced and investigated semi homeomorphism, some what homeo-morphism α - homeomorphism,g^{-} - homeomorphism, g-homeomorphism and gc-homeomorphism. Neubrunn[9] and Piotrowski[11] have proved that semi homeomorphism and semi-homeomorphism are independent concepts. Parimelazhagan[10] has introduced sg* - closed set In this paper we introduce new stronger form of irresolute maps and homeomorphism of sg* - closed sets. Also we studied some of its basic properties.

Preliminaries

Before entering into our work, we recall the following definitions which are due to Levine.

Definition 2.1[1]: A function $f: X \rightarrow Y$ from a topological space X into a topological space Y is said to be irresolute if the f^{-1} of every semi-open set in Y is semi-open in X.

Definition 2.2[2]: A function $f: X \rightarrow Y$ from a topological space X into a topological space Y is said to be gc- irresolute if the f^{-1} of every g-open set in Y is g-open in X.

Definition 2.3[7]: A function $f: X \rightarrow Y$ from a topological space X into a topological space Y is said to be α- irresolute if f^{-1} of every α- open set in Y is α-open in X.

Definition 2.4[11]: A function $f: X \rightarrow Y$ is said to be semi-homeomorphism if f is continuous, semi open and bijective.

Definition 2.5[3]: A function $f: X \rightarrow Y$ is said to be semi-homeomorphism if f is irresolute, pre-semi open and bijective.

Definition 2.6[8]: A function $f: X \rightarrow Y$ is said to be generalized homeomorphism (g-homeomorphism) if f is g-continuous, g-open and bijective.

Definition 2.7[10]: A function $f: X \rightarrow Y$ is said to be ge-homeomorphism if f is gc- irresolute and f^{-1} is also gc- irresolute.

Definition 2.8[10]: Let $f(X, \tau)$ be a topological space and A be its subsect, then A is strongly g^{*}-closed set if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is open.

Strongly g* -irresolute Map

In this section we have introduced the concept of strongly g^{*} - irresolute in topological spaces.

Definition 3.1: Let X and Y be topological spaces. A map $f: X \rightarrow Y$ is said to be strongly g^{*} - irresolute map (sg* - irresolute map) if the inverse image of every sg* -open set in Y is sg* -open in X.

Theorem 3.2: Let X, Y, Z be topological spaces and let $f: X \rightarrow Y$, $g: Y \rightarrow Z$ be two maps. Their composition gof: $X \rightarrow Z$ is sg* -continuous if f is sg* - irresolute and g is sg* - continuous.

Proof: Let V be an open set in Z. Then $(gof)^{-1}(V) = g^{-1}(f^{-1}(V)) = f^{-1}(V)$, where $V = g^{-1}(V)$ is sg* -open in Y as g is sg* - continuous. Since f is sg* - irresolute $f^{-1}(V)$ is sg* -open in X. Thus gof is sg* - continuous.

Theorem 3.3: Let X, Y, Z be topological spaces. Let $f: X \rightarrow Y$, $g: Y \rightarrow Z$ be two sg* - irresolute maps. Then their composition gof: $X \rightarrow Z$ is a sg* - irresolute map.
Theorem 3.4: Let X,Y,Z be topological spaces. Let $f: X \to Y, g: Y \to Z$ be two maps. Then their composition $gof: X \to Z$ is g-open if g is g-open. If g is surjective then f is g-closed.

Example 3.10: Let $X = Y = \{a,b,c\}$ with $\tau = \{\phi, X, \{a\}, \{a,c\}\}$. Assume $\sigma = \{\phi, Y, \{a\}, \{a,b\}\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be denoted by $f(a) = b, f(b) = c, f(c) = a$. Then f is g-homeomorphism but not g-open.

Remark: The converse of the above theorem need not be true as seen from the following example.

Example 3.6: Let $X = Y = \{a,b,c\}$ with $\tau = \{\phi, X, \{a\}, \{a,c\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{a,b\}\}$. Then $f: (X, \tau) \to (Y, \sigma)$ is denoted by $f(a) = a, f(b) = b, f(c) = c$. Then f is g-homeomorphism but not g-open.

Theorem 3.3: If a bijection $f: X \to Y$ is g--homeomorphism then f is g-continuous.

Proof: Let Y be a g-open in Z. Consider $(gof)^{-1}(Y) = f^{-1}(Y)$, where $V = g^{-1}(V)$ is g-open in Y, as g is g-irresolute. Hence f is g-continuous.

Theorem 4.4: A bijection $f: X \to Y$ is g-homeomorphism if and only if f^{-1} is g-continuous.

Proof: Let f be a bijection $f: X \to Y$. Then f^{-1} is g-continuous if and only if f is g-homeomorphism.

Definition 4.1: Let X and Y be two topological spaces. A bijection map $f: X \to Y$ from a topological space X into a topological space Y is called strongly g-homeomorphism (strongly g-homeomorphism) if f and f^{-1} are g-continuous.

Theorem 4.2: Every homeomorphism is g-homeomorphism.

Proof: Let $f: X \to Y$ be homeomorphisms from the topological space X to Y then f and f^{-1} are continuous. As every continuous function is g-continuous. We have f and f^{-1} are g-continuous. Thus f is g-homeomorphism.

Remark: The converse of the above theorem need not be true as seen from the following example.

Example 3.3: Let $X = Y = \{a,b,c\}$ with $\tau = \{\phi, X, \{a\}, \{a,c\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{a,b\}\}$. Then $f: (X, \tau) \to (Y, \sigma)$ is defined as $f(a) = \{a\}, f(b) = \{a,c\}$ then f is g-homeomorphism but not g-closed as the inverse image of the open set $\{a\}$ in X is $\{a\}$ is not open in Y.

Theorem 4.3: A bijection $f: X \to Y$ from a topological space X into a topological space Y is g-homeomorphism then it is g-homeomorphism.

Proof: Since f is g-homeomorphism both f and f^{-1} are g-continuous. As every continuous functions are g-continuous f and f^{-1} are g-continuous. Thus f is g-homeomorphism.

Remark: The converse of the above theorem need not be true as seen from the following example.

Example 4.3: Let $X = Y = \{a,b,c\}$ with $\tau = \{\phi, X, \{a\}, \{a,c\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{a,b\}\}$. Then $f: (X, \tau) \to (Y, \sigma)$ is defined as $f(a) = \{a\}, f(b) = \{a,c\}$ then f is g-homeomorphism but not g-closed as the inverse image of the open set $\{a\}$ in X is $\{a\}$ is not open in Y.

Theorem 4.6: Let X and Y be topological spaces and let f be a bijection mapping from X onto Y. Then the following conditions are equivalent.

(i) f is g-open and g-continuous.
(ii) f is g-closed and g-continuous.
(iii) f is g-closed.

Proof:
(i) To prove (a) \Rightarrow (b)

(ii) To prove (b) \Rightarrow (a)

(iii) To prove (b) \Rightarrow (c)

Assume that f is g-homeomorphism. Let F be a closed set in X. Then $(X-F)$ is open and $f^{-1}(g)$ is g-continuous. Since g is g-continuous, $g^{-1}(X-F)$ is g-open and $f^{-1}(X-F) = g^{-1}(F)$ is g-open. Thus $g^{-1}(F)$ is g-closed. Hence f is g-closed.

Strongly g-homeomorphisms
In this section we have introduce the concept of strongly g-homeomorphisms in topological space.
(iv) To prove (c) \(\Rightarrow\) (b)

If \(f\) is sg*-closed and sg*-continuous then we have to prove \(f^{-1}\) is also sg*-continuous. Let \(G\) be an open set. Then \(X-G\) is closed. Since \(f\) is sg*-closed, \(f(X-G)\) is sg*-closed. i.e. \(g^{-1}(X-G)=Y-g^{-1}(G)\) is sg*-closed, implies \(g^{-1}(G)\) is sg*-open. Thus inverse image under \(g\) of every open set is sg*-open. i.e. \(g = f^{-1}\) is sg*-continuous.

Thus \(f\) is sg* -homeomorphism. Hence (b) \(\Rightarrow\) (c). (v) (c) \(\iff\) (a).

Here we have proved that a sg*-closed and sg*-continuous mapping is sg*-homeomorphism in (a). We have proved that a sg*-homeomorphism is sg*-open and sg*-continuous. Thus sg*-closed and sg*-continuous mapping is also sg*-open and conversely.

References
